android_kernel_samsung_msm8976/drivers/video/da8xx-fb.c

1607 lines
40 KiB
C
Raw Normal View History

/*
* Copyright (C) 2008-2009 MontaVista Software Inc.
* Copyright (C) 2008-2009 Texas Instruments Inc
*
* Based on the LCD driver for TI Avalanche processors written by
* Ajay Singh and Shalom Hai.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option)any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fb.h>
#include <linux/dma-mapping.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/uaccess.h>
#include <linux/pm_runtime.h>
#include <linux/interrupt.h>
#include <linux/wait.h>
#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/console.h>
video: da8xx-fb: fix flicker due to 1 frame delay in updated frame Flicker/tearing effect is observed with current FB driver. Issue is because of 2 active DMA channels ping ponging among them along with usage of 2 DDR ping pong buffers in driver. Application unaware of active DMA channel keeps updating frame being displayed, this leads to tearing effect. Below steps describes the issue: 1)Initially assume both buffers FB0 and FB1 are programmed for buffer-0. 2)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0 (which is being filled), leading to tearing/flickering issue. 3)On EOF1: Program FB1 for buffer-0, indicate(wake up) application to fill up buffer-1. As FB0 is active and continues to DMA buffer-1(which is being filled), leading to tearing/flickering issue. 4)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0(which is being filled), leading to tearing/flickering issue. ... Above steps depict that issue is because of 1 frame delay in frame panned by application. Patch fixes the issue by keeping track free DMA channel and configures it in drivers PAN callback so that panned frame from application gets displayed in next frame period. Wiki below describes the issue in detail and it also has link to application with which issue can be reproduced. http://processors.wiki.ti.com/index.php/DA8xx_LCDC_Linux_FB_FAQs Signed-off-by: Nellutla, Aditya <aditya.n@ti.com> Signed-off-by: Manjunathappa, Prakash <prakash.pm@ti.com> Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
2012-07-18 15:31:56 +00:00
#include <linux/spinlock.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/lcm.h>
#include <video/da8xx-fb.h>
#include <asm/div64.h>
#define DRIVER_NAME "da8xx_lcdc"
#define LCD_VERSION_1 1
#define LCD_VERSION_2 2
/* LCD Status Register */
#define LCD_END_OF_FRAME1 BIT(9)
#define LCD_END_OF_FRAME0 BIT(8)
#define LCD_PL_LOAD_DONE BIT(6)
#define LCD_FIFO_UNDERFLOW BIT(5)
#define LCD_SYNC_LOST BIT(2)
#define LCD_FRAME_DONE BIT(0)
/* LCD DMA Control Register */
#define LCD_DMA_BURST_SIZE(x) ((x) << 4)
#define LCD_DMA_BURST_1 0x0
#define LCD_DMA_BURST_2 0x1
#define LCD_DMA_BURST_4 0x2
#define LCD_DMA_BURST_8 0x3
#define LCD_DMA_BURST_16 0x4
#define LCD_V1_END_OF_FRAME_INT_ENA BIT(2)
#define LCD_V2_END_OF_FRAME0_INT_ENA BIT(8)
#define LCD_V2_END_OF_FRAME1_INT_ENA BIT(9)
#define LCD_DUAL_FRAME_BUFFER_ENABLE BIT(0)
/* LCD Control Register */
#define LCD_CLK_DIVISOR(x) ((x) << 8)
#define LCD_RASTER_MODE 0x01
/* LCD Raster Control Register */
#define LCD_PALETTE_LOAD_MODE(x) ((x) << 20)
#define PALETTE_AND_DATA 0x00
#define PALETTE_ONLY 0x01
#define DATA_ONLY 0x02
#define LCD_MONO_8BIT_MODE BIT(9)
#define LCD_RASTER_ORDER BIT(8)
#define LCD_TFT_MODE BIT(7)
#define LCD_V1_UNDERFLOW_INT_ENA BIT(6)
#define LCD_V2_UNDERFLOW_INT_ENA BIT(5)
#define LCD_V1_PL_INT_ENA BIT(4)
#define LCD_V2_PL_INT_ENA BIT(6)
#define LCD_MONOCHROME_MODE BIT(1)
#define LCD_RASTER_ENABLE BIT(0)
#define LCD_TFT_ALT_ENABLE BIT(23)
#define LCD_STN_565_ENABLE BIT(24)
#define LCD_V2_DMA_CLK_EN BIT(2)
#define LCD_V2_LIDD_CLK_EN BIT(1)
#define LCD_V2_CORE_CLK_EN BIT(0)
#define LCD_V2_LPP_B10 26
#define LCD_V2_TFT_24BPP_MODE BIT(25)
#define LCD_V2_TFT_24BPP_UNPACK BIT(26)
/* LCD Raster Timing 2 Register */
#define LCD_AC_BIAS_TRANSITIONS_PER_INT(x) ((x) << 16)
#define LCD_AC_BIAS_FREQUENCY(x) ((x) << 8)
#define LCD_SYNC_CTRL BIT(25)
#define LCD_SYNC_EDGE BIT(24)
#define LCD_INVERT_PIXEL_CLOCK BIT(22)
#define LCD_INVERT_LINE_CLOCK BIT(21)
#define LCD_INVERT_FRAME_CLOCK BIT(20)
/* LCD Block */
#define LCD_PID_REG 0x0
#define LCD_CTRL_REG 0x4
#define LCD_STAT_REG 0x8
#define LCD_RASTER_CTRL_REG 0x28
#define LCD_RASTER_TIMING_0_REG 0x2C
#define LCD_RASTER_TIMING_1_REG 0x30
#define LCD_RASTER_TIMING_2_REG 0x34
#define LCD_DMA_CTRL_REG 0x40
#define LCD_DMA_FRM_BUF_BASE_ADDR_0_REG 0x44
#define LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG 0x48
#define LCD_DMA_FRM_BUF_BASE_ADDR_1_REG 0x4C
#define LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG 0x50
/* Interrupt Registers available only in Version 2 */
#define LCD_RAW_STAT_REG 0x58
#define LCD_MASKED_STAT_REG 0x5c
#define LCD_INT_ENABLE_SET_REG 0x60
#define LCD_INT_ENABLE_CLR_REG 0x64
#define LCD_END_OF_INT_IND_REG 0x68
/* Clock registers available only on Version 2 */
#define LCD_CLK_ENABLE_REG 0x6c
#define LCD_CLK_RESET_REG 0x70
#define LCD_CLK_MAIN_RESET BIT(3)
#define LCD_NUM_BUFFERS 2
#define WSI_TIMEOUT 50
#define PALETTE_SIZE 256
#define LEFT_MARGIN 64
#define RIGHT_MARGIN 64
#define UPPER_MARGIN 32
#define LOWER_MARGIN 32
static void __iomem *da8xx_fb_reg_base;
static struct resource *lcdc_regs;
static unsigned int lcd_revision;
static irq_handler_t lcdc_irq_handler;
static wait_queue_head_t frame_done_wq;
static int frame_done_flag;
static inline unsigned int lcdc_read(unsigned int addr)
{
return (unsigned int)__raw_readl(da8xx_fb_reg_base + (addr));
}
static inline void lcdc_write(unsigned int val, unsigned int addr)
{
__raw_writel(val, da8xx_fb_reg_base + (addr));
}
struct da8xx_fb_par {
resource_size_t p_palette_base;
unsigned char *v_palette_base;
dma_addr_t vram_phys;
unsigned long vram_size;
void *vram_virt;
unsigned int dma_start;
unsigned int dma_end;
struct clk *lcdc_clk;
int irq;
unsigned int palette_sz;
unsigned int pxl_clk;
int blank;
wait_queue_head_t vsync_wait;
int vsync_flag;
int vsync_timeout;
video: da8xx-fb: fix flicker due to 1 frame delay in updated frame Flicker/tearing effect is observed with current FB driver. Issue is because of 2 active DMA channels ping ponging among them along with usage of 2 DDR ping pong buffers in driver. Application unaware of active DMA channel keeps updating frame being displayed, this leads to tearing effect. Below steps describes the issue: 1)Initially assume both buffers FB0 and FB1 are programmed for buffer-0. 2)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0 (which is being filled), leading to tearing/flickering issue. 3)On EOF1: Program FB1 for buffer-0, indicate(wake up) application to fill up buffer-1. As FB0 is active and continues to DMA buffer-1(which is being filled), leading to tearing/flickering issue. 4)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0(which is being filled), leading to tearing/flickering issue. ... Above steps depict that issue is because of 1 frame delay in frame panned by application. Patch fixes the issue by keeping track free DMA channel and configures it in drivers PAN callback so that panned frame from application gets displayed in next frame period. Wiki below describes the issue in detail and it also has link to application with which issue can be reproduced. http://processors.wiki.ti.com/index.php/DA8xx_LCDC_Linux_FB_FAQs Signed-off-by: Nellutla, Aditya <aditya.n@ti.com> Signed-off-by: Manjunathappa, Prakash <prakash.pm@ti.com> Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
2012-07-18 15:31:56 +00:00
spinlock_t lock_for_chan_update;
/*
* LCDC has 2 ping pong DMA channels, channel 0
* and channel 1.
*/
unsigned int which_dma_channel_done;
#ifdef CONFIG_CPU_FREQ
struct notifier_block freq_transition;
unsigned int lcd_fck_rate;
#endif
void (*panel_power_ctrl)(int);
u32 pseudo_palette[16];
};
/* Variable Screen Information */
static struct fb_var_screeninfo da8xx_fb_var = {
.xoffset = 0,
.yoffset = 0,
.transp = {0, 0, 0},
.nonstd = 0,
.activate = 0,
.height = -1,
.width = -1,
.accel_flags = 0,
.left_margin = LEFT_MARGIN,
.right_margin = RIGHT_MARGIN,
.upper_margin = UPPER_MARGIN,
.lower_margin = LOWER_MARGIN,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED
};
static struct fb_fix_screeninfo da8xx_fb_fix = {
.id = "DA8xx FB Drv",
.type = FB_TYPE_PACKED_PIXELS,
.type_aux = 0,
.visual = FB_VISUAL_PSEUDOCOLOR,
.xpanstep = 0,
.ypanstep = 1,
.ywrapstep = 0,
.accel = FB_ACCEL_NONE
};
static struct fb_videomode known_lcd_panels[] = {
/* Sharp LCD035Q3DG01 */
[0] = {
.name = "Sharp_LCD035Q3DG01",
.xres = 320,
.yres = 240,
.pixclock = 4608000,
.left_margin = 6,
.right_margin = 8,
.upper_margin = 2,
.lower_margin = 2,
.hsync_len = 0,
.vsync_len = 0,
.sync = FB_SYNC_CLK_INVERT,
},
/* Sharp LK043T1DG01 */
[1] = {
.name = "Sharp_LK043T1DG01",
.xres = 480,
.yres = 272,
.pixclock = 7833600,
.left_margin = 2,
.right_margin = 2,
.upper_margin = 2,
.lower_margin = 2,
.hsync_len = 41,
.vsync_len = 10,
.sync = 0,
.flag = 0,
},
[2] = {
/* Hitachi SP10Q010 */
.name = "SP10Q010",
.xres = 320,
.yres = 240,
.pixclock = 7833600,
.left_margin = 10,
.right_margin = 10,
.upper_margin = 10,
.lower_margin = 10,
.hsync_len = 10,
.vsync_len = 10,
.sync = 0,
.flag = 0,
},
};
/* Enable the Raster Engine of the LCD Controller */
static inline void lcd_enable_raster(void)
{
u32 reg;
/* Put LCDC in reset for several cycles */
if (lcd_revision == LCD_VERSION_2)
/* Write 1 to reset LCDC */
lcdc_write(LCD_CLK_MAIN_RESET, LCD_CLK_RESET_REG);
mdelay(1);
/* Bring LCDC out of reset */
if (lcd_revision == LCD_VERSION_2)
lcdc_write(0, LCD_CLK_RESET_REG);
mdelay(1);
/* Above reset sequence doesnot reset register context */
reg = lcdc_read(LCD_RASTER_CTRL_REG);
if (!(reg & LCD_RASTER_ENABLE))
lcdc_write(reg | LCD_RASTER_ENABLE, LCD_RASTER_CTRL_REG);
}
/* Disable the Raster Engine of the LCD Controller */
static inline void lcd_disable_raster(bool wait_for_frame_done)
{
u32 reg;
int ret;
reg = lcdc_read(LCD_RASTER_CTRL_REG);
if (reg & LCD_RASTER_ENABLE)
lcdc_write(reg & ~LCD_RASTER_ENABLE, LCD_RASTER_CTRL_REG);
else
/* return if already disabled */
return;
if ((wait_for_frame_done == true) && (lcd_revision == LCD_VERSION_2)) {
frame_done_flag = 0;
ret = wait_event_interruptible_timeout(frame_done_wq,
frame_done_flag != 0,
msecs_to_jiffies(50));
if (ret == 0)
pr_err("LCD Controller timed out\n");
}
}
static void lcd_blit(int load_mode, struct da8xx_fb_par *par)
{
u32 start;
u32 end;
u32 reg_ras;
u32 reg_dma;
u32 reg_int;
/* init reg to clear PLM (loading mode) fields */
reg_ras = lcdc_read(LCD_RASTER_CTRL_REG);
reg_ras &= ~(3 << 20);
reg_dma = lcdc_read(LCD_DMA_CTRL_REG);
if (load_mode == LOAD_DATA) {
start = par->dma_start;
end = par->dma_end;
reg_ras |= LCD_PALETTE_LOAD_MODE(DATA_ONLY);
if (lcd_revision == LCD_VERSION_1) {
reg_dma |= LCD_V1_END_OF_FRAME_INT_ENA;
} else {
reg_int = lcdc_read(LCD_INT_ENABLE_SET_REG) |
LCD_V2_END_OF_FRAME0_INT_ENA |
LCD_V2_END_OF_FRAME1_INT_ENA |
LCD_FRAME_DONE;
lcdc_write(reg_int, LCD_INT_ENABLE_SET_REG);
}
reg_dma |= LCD_DUAL_FRAME_BUFFER_ENABLE;
lcdc_write(start, LCD_DMA_FRM_BUF_BASE_ADDR_0_REG);
lcdc_write(end, LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG);
lcdc_write(start, LCD_DMA_FRM_BUF_BASE_ADDR_1_REG);
lcdc_write(end, LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG);
} else if (load_mode == LOAD_PALETTE) {
start = par->p_palette_base;
end = start + par->palette_sz - 1;
reg_ras |= LCD_PALETTE_LOAD_MODE(PALETTE_ONLY);
if (lcd_revision == LCD_VERSION_1) {
reg_ras |= LCD_V1_PL_INT_ENA;
} else {
reg_int = lcdc_read(LCD_INT_ENABLE_SET_REG) |
LCD_V2_PL_INT_ENA;
lcdc_write(reg_int, LCD_INT_ENABLE_SET_REG);
}
lcdc_write(start, LCD_DMA_FRM_BUF_BASE_ADDR_0_REG);
lcdc_write(end, LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG);
}
lcdc_write(reg_dma, LCD_DMA_CTRL_REG);
lcdc_write(reg_ras, LCD_RASTER_CTRL_REG);
/*
* The Raster enable bit must be set after all other control fields are
* set.
*/
lcd_enable_raster();
}
/* Configure the Burst Size and fifo threhold of DMA */
static int lcd_cfg_dma(int burst_size, int fifo_th)
{
u32 reg;
reg = lcdc_read(LCD_DMA_CTRL_REG) & 0x00000001;
switch (burst_size) {
case 1:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_1);
break;
case 2:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_2);
break;
case 4:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_4);
break;
case 8:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_8);
break;
case 16:
default:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_16);
break;
}
reg |= (fifo_th << 8);
lcdc_write(reg, LCD_DMA_CTRL_REG);
return 0;
}
static void lcd_cfg_ac_bias(int period, int transitions_per_int)
{
u32 reg;
/* Set the AC Bias Period and Number of Transisitons per Interrupt */
reg = lcdc_read(LCD_RASTER_TIMING_2_REG) & 0xFFF00000;
reg |= LCD_AC_BIAS_FREQUENCY(period) |
LCD_AC_BIAS_TRANSITIONS_PER_INT(transitions_per_int);
lcdc_write(reg, LCD_RASTER_TIMING_2_REG);
}
static void lcd_cfg_horizontal_sync(int back_porch, int pulse_width,
int front_porch)
{
u32 reg;
reg = lcdc_read(LCD_RASTER_TIMING_0_REG) & 0xf;
reg |= ((back_porch & 0xff) << 24)
| ((front_porch & 0xff) << 16)
| ((pulse_width & 0x3f) << 10);
lcdc_write(reg, LCD_RASTER_TIMING_0_REG);
}
static void lcd_cfg_vertical_sync(int back_porch, int pulse_width,
int front_porch)
{
u32 reg;
reg = lcdc_read(LCD_RASTER_TIMING_1_REG) & 0x3ff;
reg |= ((back_porch & 0xff) << 24)
| ((front_porch & 0xff) << 16)
| ((pulse_width & 0x3f) << 10);
lcdc_write(reg, LCD_RASTER_TIMING_1_REG);
}
static int lcd_cfg_display(const struct lcd_ctrl_config *cfg,
struct fb_videomode *panel)
{
u32 reg;
u32 reg_int;
reg = lcdc_read(LCD_RASTER_CTRL_REG) & ~(LCD_TFT_MODE |
LCD_MONO_8BIT_MODE |
LCD_MONOCHROME_MODE);
switch (cfg->panel_shade) {
case MONOCHROME:
reg |= LCD_MONOCHROME_MODE;
if (cfg->mono_8bit_mode)
reg |= LCD_MONO_8BIT_MODE;
break;
case COLOR_ACTIVE:
reg |= LCD_TFT_MODE;
if (cfg->tft_alt_mode)
reg |= LCD_TFT_ALT_ENABLE;
break;
case COLOR_PASSIVE:
/* AC bias applicable only for Pasive panels */
lcd_cfg_ac_bias(cfg->ac_bias, cfg->ac_bias_intrpt);
if (cfg->bpp == 12 && cfg->stn_565_mode)
reg |= LCD_STN_565_ENABLE;
break;
default:
return -EINVAL;
}
/* enable additional interrupts here */
if (lcd_revision == LCD_VERSION_1) {
reg |= LCD_V1_UNDERFLOW_INT_ENA;
} else {
reg_int = lcdc_read(LCD_INT_ENABLE_SET_REG) |
LCD_V2_UNDERFLOW_INT_ENA;
lcdc_write(reg_int, LCD_INT_ENABLE_SET_REG);
}
lcdc_write(reg, LCD_RASTER_CTRL_REG);
reg = lcdc_read(LCD_RASTER_TIMING_2_REG);
reg |= LCD_SYNC_CTRL;
if (cfg->sync_edge)
reg |= LCD_SYNC_EDGE;
else
reg &= ~LCD_SYNC_EDGE;
if (panel->sync & FB_SYNC_HOR_HIGH_ACT)
reg |= LCD_INVERT_LINE_CLOCK;
else
reg &= ~LCD_INVERT_LINE_CLOCK;
if (panel->sync & FB_SYNC_VERT_HIGH_ACT)
reg |= LCD_INVERT_FRAME_CLOCK;
else
reg &= ~LCD_INVERT_FRAME_CLOCK;
lcdc_write(reg, LCD_RASTER_TIMING_2_REG);
return 0;
}
static int lcd_cfg_frame_buffer(struct da8xx_fb_par *par, u32 width, u32 height,
u32 bpp, u32 raster_order)
{
u32 reg;
if (bpp > 16 && lcd_revision == LCD_VERSION_1)
return -EINVAL;
/* Set the Panel Width */
/* Pixels per line = (PPL + 1)*16 */
if (lcd_revision == LCD_VERSION_1) {
/*
* 0x3F in bits 4..9 gives max horizontal resolution = 1024
* pixels.
*/
width &= 0x3f0;
} else {
/*
* 0x7F in bits 4..10 gives max horizontal resolution = 2048
* pixels.
*/
width &= 0x7f0;
}
reg = lcdc_read(LCD_RASTER_TIMING_0_REG);
reg &= 0xfffffc00;
if (lcd_revision == LCD_VERSION_1) {
reg |= ((width >> 4) - 1) << 4;
} else {
width = (width >> 4) - 1;
reg |= ((width & 0x3f) << 4) | ((width & 0x40) >> 3);
}
lcdc_write(reg, LCD_RASTER_TIMING_0_REG);
/* Set the Panel Height */
/* Set bits 9:0 of Lines Per Pixel */
reg = lcdc_read(LCD_RASTER_TIMING_1_REG);
reg = ((height - 1) & 0x3ff) | (reg & 0xfffffc00);
lcdc_write(reg, LCD_RASTER_TIMING_1_REG);
/* Set bit 10 of Lines Per Pixel */
if (lcd_revision == LCD_VERSION_2) {
reg = lcdc_read(LCD_RASTER_TIMING_2_REG);
reg |= ((height - 1) & 0x400) << 16;
lcdc_write(reg, LCD_RASTER_TIMING_2_REG);
}
/* Set the Raster Order of the Frame Buffer */
reg = lcdc_read(LCD_RASTER_CTRL_REG) & ~(1 << 8);
if (raster_order)
reg |= LCD_RASTER_ORDER;
par->palette_sz = 16 * 2;
switch (bpp) {
case 1:
case 2:
case 4:
case 16:
break;
case 24:
reg |= LCD_V2_TFT_24BPP_MODE;
case 32:
reg |= LCD_V2_TFT_24BPP_UNPACK;
break;
case 8:
par->palette_sz = 256 * 2;
break;
default:
return -EINVAL;
}
lcdc_write(reg, LCD_RASTER_CTRL_REG);
return 0;
}
#define CNVT_TOHW(val, width) ((((val) << (width)) + 0x7FFF - (val)) >> 16)
static int fb_setcolreg(unsigned regno, unsigned red, unsigned green,
unsigned blue, unsigned transp,
struct fb_info *info)
{
struct da8xx_fb_par *par = info->par;
unsigned short *palette = (unsigned short *) par->v_palette_base;
u_short pal;
int update_hw = 0;
if (regno > 255)
return 1;
if (info->fix.visual == FB_VISUAL_DIRECTCOLOR)
return 1;
if (info->var.bits_per_pixel > 16 && lcd_revision == LCD_VERSION_1)
return -EINVAL;
switch (info->fix.visual) {
case FB_VISUAL_TRUECOLOR:
red = CNVT_TOHW(red, info->var.red.length);
green = CNVT_TOHW(green, info->var.green.length);
blue = CNVT_TOHW(blue, info->var.blue.length);
break;
case FB_VISUAL_PSEUDOCOLOR:
switch (info->var.bits_per_pixel) {
case 4:
if (regno > 15)
return -EINVAL;
if (info->var.grayscale) {
pal = regno;
} else {
red >>= 4;
green >>= 8;
blue >>= 12;
pal = red & 0x0f00;
pal |= green & 0x00f0;
pal |= blue & 0x000f;
}
if (regno == 0)
pal |= 0x2000;
palette[regno] = pal;
break;
case 8:
red >>= 4;
green >>= 8;
blue >>= 12;
pal = (red & 0x0f00);
pal |= (green & 0x00f0);
pal |= (blue & 0x000f);
if (palette[regno] != pal) {
update_hw = 1;
palette[regno] = pal;
}
break;
}
break;
}
/* Truecolor has hardware independent palette */
if (info->fix.visual == FB_VISUAL_TRUECOLOR) {
u32 v;
if (regno > 15)
return -EINVAL;
v = (red << info->var.red.offset) |
(green << info->var.green.offset) |
(blue << info->var.blue.offset);
switch (info->var.bits_per_pixel) {
case 16:
((u16 *) (info->pseudo_palette))[regno] = v;
break;
case 24:
case 32:
((u32 *) (info->pseudo_palette))[regno] = v;
break;
}
if (palette[0] != 0x4000) {
update_hw = 1;
palette[0] = 0x4000;
}
}
/* Update the palette in the h/w as needed. */
if (update_hw)
lcd_blit(LOAD_PALETTE, par);
return 0;
}
#undef CNVT_TOHW
static void lcd_reset(struct da8xx_fb_par *par)
{
/* Disable the Raster if previously Enabled */
lcd_disable_raster(false);
/* DMA has to be disabled */
lcdc_write(0, LCD_DMA_CTRL_REG);
lcdc_write(0, LCD_RASTER_CTRL_REG);
if (lcd_revision == LCD_VERSION_2) {
lcdc_write(0, LCD_INT_ENABLE_SET_REG);
/* Write 1 to reset */
lcdc_write(LCD_CLK_MAIN_RESET, LCD_CLK_RESET_REG);
lcdc_write(0, LCD_CLK_RESET_REG);
}
}
static void lcd_calc_clk_divider(struct da8xx_fb_par *par)
{
unsigned int lcd_clk, div;
lcd_clk = clk_get_rate(par->lcdc_clk);
div = lcd_clk / par->pxl_clk;
/* Configure the LCD clock divisor. */
lcdc_write(LCD_CLK_DIVISOR(div) |
(LCD_RASTER_MODE & 0x1), LCD_CTRL_REG);
if (lcd_revision == LCD_VERSION_2)
lcdc_write(LCD_V2_DMA_CLK_EN | LCD_V2_LIDD_CLK_EN |
LCD_V2_CORE_CLK_EN, LCD_CLK_ENABLE_REG);
}
static int lcd_init(struct da8xx_fb_par *par, const struct lcd_ctrl_config *cfg,
struct fb_videomode *panel)
{
u32 bpp;
int ret = 0;
lcd_reset(par);
/* Calculate the divider */
lcd_calc_clk_divider(par);
if (panel->sync & FB_SYNC_CLK_INVERT)
lcdc_write((lcdc_read(LCD_RASTER_TIMING_2_REG) |
LCD_INVERT_PIXEL_CLOCK), LCD_RASTER_TIMING_2_REG);
else
lcdc_write((lcdc_read(LCD_RASTER_TIMING_2_REG) &
~LCD_INVERT_PIXEL_CLOCK), LCD_RASTER_TIMING_2_REG);
/* Configure the DMA burst size and fifo threshold. */
ret = lcd_cfg_dma(cfg->dma_burst_sz, cfg->fifo_th);
if (ret < 0)
return ret;
/* Configure the vertical and horizontal sync properties. */
lcd_cfg_vertical_sync(panel->lower_margin, panel->vsync_len,
panel->upper_margin);
lcd_cfg_horizontal_sync(panel->right_margin, panel->hsync_len,
panel->left_margin);
/* Configure for disply */
ret = lcd_cfg_display(cfg, panel);
if (ret < 0)
return ret;
bpp = cfg->bpp;
if (bpp == 12)
bpp = 16;
ret = lcd_cfg_frame_buffer(par, (unsigned int)panel->xres,
(unsigned int)panel->yres, bpp,
cfg->raster_order);
if (ret < 0)
return ret;
/* Configure FDD */
lcdc_write((lcdc_read(LCD_RASTER_CTRL_REG) & 0xfff00fff) |
(cfg->fdd << 12), LCD_RASTER_CTRL_REG);
return 0;
}
/* IRQ handler for version 2 of LCDC */
static irqreturn_t lcdc_irq_handler_rev02(int irq, void *arg)
{
struct da8xx_fb_par *par = arg;
u32 stat = lcdc_read(LCD_MASKED_STAT_REG);
if ((stat & LCD_SYNC_LOST) && (stat & LCD_FIFO_UNDERFLOW)) {
lcd_disable_raster(false);
lcdc_write(stat, LCD_MASKED_STAT_REG);
lcd_enable_raster();
} else if (stat & LCD_PL_LOAD_DONE) {
/*
* Must disable raster before changing state of any control bit.
* And also must be disabled before clearing the PL loading
* interrupt via the following write to the status register. If
* this is done after then one gets multiple PL done interrupts.
*/
lcd_disable_raster(false);
lcdc_write(stat, LCD_MASKED_STAT_REG);
/* Disable PL completion interrupt */
lcdc_write(LCD_V2_PL_INT_ENA, LCD_INT_ENABLE_CLR_REG);
/* Setup and start data loading mode */
lcd_blit(LOAD_DATA, par);
} else {
lcdc_write(stat, LCD_MASKED_STAT_REG);
if (stat & LCD_END_OF_FRAME0) {
video: da8xx-fb: fix flicker due to 1 frame delay in updated frame Flicker/tearing effect is observed with current FB driver. Issue is because of 2 active DMA channels ping ponging among them along with usage of 2 DDR ping pong buffers in driver. Application unaware of active DMA channel keeps updating frame being displayed, this leads to tearing effect. Below steps describes the issue: 1)Initially assume both buffers FB0 and FB1 are programmed for buffer-0. 2)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0 (which is being filled), leading to tearing/flickering issue. 3)On EOF1: Program FB1 for buffer-0, indicate(wake up) application to fill up buffer-1. As FB0 is active and continues to DMA buffer-1(which is being filled), leading to tearing/flickering issue. 4)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0(which is being filled), leading to tearing/flickering issue. ... Above steps depict that issue is because of 1 frame delay in frame panned by application. Patch fixes the issue by keeping track free DMA channel and configures it in drivers PAN callback so that panned frame from application gets displayed in next frame period. Wiki below describes the issue in detail and it also has link to application with which issue can be reproduced. http://processors.wiki.ti.com/index.php/DA8xx_LCDC_Linux_FB_FAQs Signed-off-by: Nellutla, Aditya <aditya.n@ti.com> Signed-off-by: Manjunathappa, Prakash <prakash.pm@ti.com> Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
2012-07-18 15:31:56 +00:00
par->which_dma_channel_done = 0;
lcdc_write(par->dma_start,
LCD_DMA_FRM_BUF_BASE_ADDR_0_REG);
lcdc_write(par->dma_end,
LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG);
par->vsync_flag = 1;
wake_up_interruptible(&par->vsync_wait);
}
if (stat & LCD_END_OF_FRAME1) {
video: da8xx-fb: fix flicker due to 1 frame delay in updated frame Flicker/tearing effect is observed with current FB driver. Issue is because of 2 active DMA channels ping ponging among them along with usage of 2 DDR ping pong buffers in driver. Application unaware of active DMA channel keeps updating frame being displayed, this leads to tearing effect. Below steps describes the issue: 1)Initially assume both buffers FB0 and FB1 are programmed for buffer-0. 2)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0 (which is being filled), leading to tearing/flickering issue. 3)On EOF1: Program FB1 for buffer-0, indicate(wake up) application to fill up buffer-1. As FB0 is active and continues to DMA buffer-1(which is being filled), leading to tearing/flickering issue. 4)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0(which is being filled), leading to tearing/flickering issue. ... Above steps depict that issue is because of 1 frame delay in frame panned by application. Patch fixes the issue by keeping track free DMA channel and configures it in drivers PAN callback so that panned frame from application gets displayed in next frame period. Wiki below describes the issue in detail and it also has link to application with which issue can be reproduced. http://processors.wiki.ti.com/index.php/DA8xx_LCDC_Linux_FB_FAQs Signed-off-by: Nellutla, Aditya <aditya.n@ti.com> Signed-off-by: Manjunathappa, Prakash <prakash.pm@ti.com> Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
2012-07-18 15:31:56 +00:00
par->which_dma_channel_done = 1;
lcdc_write(par->dma_start,
LCD_DMA_FRM_BUF_BASE_ADDR_1_REG);
lcdc_write(par->dma_end,
LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG);
par->vsync_flag = 1;
wake_up_interruptible(&par->vsync_wait);
}
/* Set only when controller is disabled and at the end of
* active frame
*/
if (stat & BIT(0)) {
frame_done_flag = 1;
wake_up_interruptible(&frame_done_wq);
}
}
lcdc_write(0, LCD_END_OF_INT_IND_REG);
return IRQ_HANDLED;
}
/* IRQ handler for version 1 LCDC */
static irqreturn_t lcdc_irq_handler_rev01(int irq, void *arg)
{
struct da8xx_fb_par *par = arg;
u32 stat = lcdc_read(LCD_STAT_REG);
u32 reg_ras;
if ((stat & LCD_SYNC_LOST) && (stat & LCD_FIFO_UNDERFLOW)) {
lcd_disable_raster(false);
lcdc_write(stat, LCD_STAT_REG);
lcd_enable_raster();
} else if (stat & LCD_PL_LOAD_DONE) {
/*
* Must disable raster before changing state of any control bit.
* And also must be disabled before clearing the PL loading
* interrupt via the following write to the status register. If
* this is done after then one gets multiple PL done interrupts.
*/
lcd_disable_raster(false);
lcdc_write(stat, LCD_STAT_REG);
/* Disable PL completion inerrupt */
reg_ras = lcdc_read(LCD_RASTER_CTRL_REG);
reg_ras &= ~LCD_V1_PL_INT_ENA;
lcdc_write(reg_ras, LCD_RASTER_CTRL_REG);
/* Setup and start data loading mode */
lcd_blit(LOAD_DATA, par);
} else {
lcdc_write(stat, LCD_STAT_REG);
if (stat & LCD_END_OF_FRAME0) {
video: da8xx-fb: fix flicker due to 1 frame delay in updated frame Flicker/tearing effect is observed with current FB driver. Issue is because of 2 active DMA channels ping ponging among them along with usage of 2 DDR ping pong buffers in driver. Application unaware of active DMA channel keeps updating frame being displayed, this leads to tearing effect. Below steps describes the issue: 1)Initially assume both buffers FB0 and FB1 are programmed for buffer-0. 2)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0 (which is being filled), leading to tearing/flickering issue. 3)On EOF1: Program FB1 for buffer-0, indicate(wake up) application to fill up buffer-1. As FB0 is active and continues to DMA buffer-1(which is being filled), leading to tearing/flickering issue. 4)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0(which is being filled), leading to tearing/flickering issue. ... Above steps depict that issue is because of 1 frame delay in frame panned by application. Patch fixes the issue by keeping track free DMA channel and configures it in drivers PAN callback so that panned frame from application gets displayed in next frame period. Wiki below describes the issue in detail and it also has link to application with which issue can be reproduced. http://processors.wiki.ti.com/index.php/DA8xx_LCDC_Linux_FB_FAQs Signed-off-by: Nellutla, Aditya <aditya.n@ti.com> Signed-off-by: Manjunathappa, Prakash <prakash.pm@ti.com> Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
2012-07-18 15:31:56 +00:00
par->which_dma_channel_done = 0;
lcdc_write(par->dma_start,
LCD_DMA_FRM_BUF_BASE_ADDR_0_REG);
lcdc_write(par->dma_end,
LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG);
par->vsync_flag = 1;
wake_up_interruptible(&par->vsync_wait);
}
if (stat & LCD_END_OF_FRAME1) {
video: da8xx-fb: fix flicker due to 1 frame delay in updated frame Flicker/tearing effect is observed with current FB driver. Issue is because of 2 active DMA channels ping ponging among them along with usage of 2 DDR ping pong buffers in driver. Application unaware of active DMA channel keeps updating frame being displayed, this leads to tearing effect. Below steps describes the issue: 1)Initially assume both buffers FB0 and FB1 are programmed for buffer-0. 2)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0 (which is being filled), leading to tearing/flickering issue. 3)On EOF1: Program FB1 for buffer-0, indicate(wake up) application to fill up buffer-1. As FB0 is active and continues to DMA buffer-1(which is being filled), leading to tearing/flickering issue. 4)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0(which is being filled), leading to tearing/flickering issue. ... Above steps depict that issue is because of 1 frame delay in frame panned by application. Patch fixes the issue by keeping track free DMA channel and configures it in drivers PAN callback so that panned frame from application gets displayed in next frame period. Wiki below describes the issue in detail and it also has link to application with which issue can be reproduced. http://processors.wiki.ti.com/index.php/DA8xx_LCDC_Linux_FB_FAQs Signed-off-by: Nellutla, Aditya <aditya.n@ti.com> Signed-off-by: Manjunathappa, Prakash <prakash.pm@ti.com> Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
2012-07-18 15:31:56 +00:00
par->which_dma_channel_done = 1;
lcdc_write(par->dma_start,
LCD_DMA_FRM_BUF_BASE_ADDR_1_REG);
lcdc_write(par->dma_end,
LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG);
par->vsync_flag = 1;
wake_up_interruptible(&par->vsync_wait);
}
}
return IRQ_HANDLED;
}
static int fb_check_var(struct fb_var_screeninfo *var,
struct fb_info *info)
{
int err = 0;
if (var->bits_per_pixel > 16 && lcd_revision == LCD_VERSION_1)
return -EINVAL;
switch (var->bits_per_pixel) {
case 1:
case 8:
var->red.offset = 0;
var->red.length = 8;
var->green.offset = 0;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->transp.offset = 0;
var->transp.length = 0;
var->nonstd = 0;
break;
case 4:
var->red.offset = 0;
var->red.length = 4;
var->green.offset = 0;
var->green.length = 4;
var->blue.offset = 0;
var->blue.length = 4;
var->transp.offset = 0;
var->transp.length = 0;
var->nonstd = FB_NONSTD_REV_PIX_IN_B;
break;
case 16: /* RGB 565 */
var->red.offset = 11;
var->red.length = 5;
var->green.offset = 5;
var->green.length = 6;
var->blue.offset = 0;
var->blue.length = 5;
var->transp.offset = 0;
var->transp.length = 0;
var->nonstd = 0;
break;
case 24:
var->red.offset = 16;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->nonstd = 0;
break;
case 32:
var->transp.offset = 24;
var->transp.length = 8;
var->red.offset = 16;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->nonstd = 0;
break;
default:
err = -EINVAL;
}
var->red.msb_right = 0;
var->green.msb_right = 0;
var->blue.msb_right = 0;
var->transp.msb_right = 0;
return err;
}
#ifdef CONFIG_CPU_FREQ
static int lcd_da8xx_cpufreq_transition(struct notifier_block *nb,
unsigned long val, void *data)
{
struct da8xx_fb_par *par;
par = container_of(nb, struct da8xx_fb_par, freq_transition);
if (val == CPUFREQ_POSTCHANGE) {
if (par->lcd_fck_rate != clk_get_rate(par->lcdc_clk)) {
par->lcd_fck_rate = clk_get_rate(par->lcdc_clk);
lcd_disable_raster(true);
lcd_calc_clk_divider(par);
if (par->blank == FB_BLANK_UNBLANK)
lcd_enable_raster();
}
}
return 0;
}
static inline int lcd_da8xx_cpufreq_register(struct da8xx_fb_par *par)
{
par->freq_transition.notifier_call = lcd_da8xx_cpufreq_transition;
return cpufreq_register_notifier(&par->freq_transition,
CPUFREQ_TRANSITION_NOTIFIER);
}
static inline void lcd_da8xx_cpufreq_deregister(struct da8xx_fb_par *par)
{
cpufreq_unregister_notifier(&par->freq_transition,
CPUFREQ_TRANSITION_NOTIFIER);
}
#endif
static int fb_remove(struct platform_device *dev)
{
struct fb_info *info = dev_get_drvdata(&dev->dev);
if (info) {
struct da8xx_fb_par *par = info->par;
#ifdef CONFIG_CPU_FREQ
lcd_da8xx_cpufreq_deregister(par);
#endif
if (par->panel_power_ctrl)
par->panel_power_ctrl(0);
lcd_disable_raster(true);
lcdc_write(0, LCD_RASTER_CTRL_REG);
/* disable DMA */
lcdc_write(0, LCD_DMA_CTRL_REG);
unregister_framebuffer(info);
fb_dealloc_cmap(&info->cmap);
dma_free_coherent(NULL, PALETTE_SIZE, par->v_palette_base,
par->p_palette_base);
dma_free_coherent(NULL, par->vram_size, par->vram_virt,
par->vram_phys);
free_irq(par->irq, par);
pm_runtime_put_sync(&dev->dev);
pm_runtime_disable(&dev->dev);
framebuffer_release(info);
iounmap(da8xx_fb_reg_base);
release_mem_region(lcdc_regs->start, resource_size(lcdc_regs));
}
return 0;
}
/*
* Function to wait for vertical sync which for this LCD peripheral
* translates into waiting for the current raster frame to complete.
*/
static int fb_wait_for_vsync(struct fb_info *info)
{
struct da8xx_fb_par *par = info->par;
int ret;
/*
* Set flag to 0 and wait for isr to set to 1. It would seem there is a
* race condition here where the ISR could have occurred just before or
* just after this set. But since we are just coarsely waiting for
* a frame to complete then that's OK. i.e. if the frame completed
* just before this code executed then we have to wait another full
* frame time but there is no way to avoid such a situation. On the
* other hand if the frame completed just after then we don't need
* to wait long at all. Either way we are guaranteed to return to the
* user immediately after a frame completion which is all that is
* required.
*/
par->vsync_flag = 0;
ret = wait_event_interruptible_timeout(par->vsync_wait,
par->vsync_flag != 0,
par->vsync_timeout);
if (ret < 0)
return ret;
if (ret == 0)
return -ETIMEDOUT;
return 0;
}
static int fb_ioctl(struct fb_info *info, unsigned int cmd,
unsigned long arg)
{
struct lcd_sync_arg sync_arg;
switch (cmd) {
case FBIOGET_CONTRAST:
case FBIOPUT_CONTRAST:
case FBIGET_BRIGHTNESS:
case FBIPUT_BRIGHTNESS:
case FBIGET_COLOR:
case FBIPUT_COLOR:
return -ENOTTY;
case FBIPUT_HSYNC:
if (copy_from_user(&sync_arg, (char *)arg,
sizeof(struct lcd_sync_arg)))
return -EFAULT;
lcd_cfg_horizontal_sync(sync_arg.back_porch,
sync_arg.pulse_width,
sync_arg.front_porch);
break;
case FBIPUT_VSYNC:
if (copy_from_user(&sync_arg, (char *)arg,
sizeof(struct lcd_sync_arg)))
return -EFAULT;
lcd_cfg_vertical_sync(sync_arg.back_porch,
sync_arg.pulse_width,
sync_arg.front_porch);
break;
case FBIO_WAITFORVSYNC:
return fb_wait_for_vsync(info);
default:
return -EINVAL;
}
return 0;
}
static int cfb_blank(int blank, struct fb_info *info)
{
struct da8xx_fb_par *par = info->par;
int ret = 0;
if (par->blank == blank)
return 0;
par->blank = blank;
switch (blank) {
case FB_BLANK_UNBLANK:
lcd_enable_raster();
if (par->panel_power_ctrl)
par->panel_power_ctrl(1);
break;
case FB_BLANK_NORMAL:
case FB_BLANK_VSYNC_SUSPEND:
case FB_BLANK_HSYNC_SUSPEND:
case FB_BLANK_POWERDOWN:
if (par->panel_power_ctrl)
par->panel_power_ctrl(0);
lcd_disable_raster(true);
break;
default:
ret = -EINVAL;
}
return ret;
}
/*
* Set new x,y offsets in the virtual display for the visible area and switch
* to the new mode.
*/
static int da8xx_pan_display(struct fb_var_screeninfo *var,
struct fb_info *fbi)
{
int ret = 0;
struct fb_var_screeninfo new_var;
struct da8xx_fb_par *par = fbi->par;
struct fb_fix_screeninfo *fix = &fbi->fix;
unsigned int end;
unsigned int start;
video: da8xx-fb: fix flicker due to 1 frame delay in updated frame Flicker/tearing effect is observed with current FB driver. Issue is because of 2 active DMA channels ping ponging among them along with usage of 2 DDR ping pong buffers in driver. Application unaware of active DMA channel keeps updating frame being displayed, this leads to tearing effect. Below steps describes the issue: 1)Initially assume both buffers FB0 and FB1 are programmed for buffer-0. 2)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0 (which is being filled), leading to tearing/flickering issue. 3)On EOF1: Program FB1 for buffer-0, indicate(wake up) application to fill up buffer-1. As FB0 is active and continues to DMA buffer-1(which is being filled), leading to tearing/flickering issue. 4)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0(which is being filled), leading to tearing/flickering issue. ... Above steps depict that issue is because of 1 frame delay in frame panned by application. Patch fixes the issue by keeping track free DMA channel and configures it in drivers PAN callback so that panned frame from application gets displayed in next frame period. Wiki below describes the issue in detail and it also has link to application with which issue can be reproduced. http://processors.wiki.ti.com/index.php/DA8xx_LCDC_Linux_FB_FAQs Signed-off-by: Nellutla, Aditya <aditya.n@ti.com> Signed-off-by: Manjunathappa, Prakash <prakash.pm@ti.com> Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
2012-07-18 15:31:56 +00:00
unsigned long irq_flags;
if (var->xoffset != fbi->var.xoffset ||
var->yoffset != fbi->var.yoffset) {
memcpy(&new_var, &fbi->var, sizeof(new_var));
new_var.xoffset = var->xoffset;
new_var.yoffset = var->yoffset;
if (fb_check_var(&new_var, fbi))
ret = -EINVAL;
else {
memcpy(&fbi->var, &new_var, sizeof(new_var));
start = fix->smem_start +
new_var.yoffset * fix->line_length +
new_var.xoffset * fbi->var.bits_per_pixel / 8;
end = start + fbi->var.yres * fix->line_length - 1;
par->dma_start = start;
par->dma_end = end;
video: da8xx-fb: fix flicker due to 1 frame delay in updated frame Flicker/tearing effect is observed with current FB driver. Issue is because of 2 active DMA channels ping ponging among them along with usage of 2 DDR ping pong buffers in driver. Application unaware of active DMA channel keeps updating frame being displayed, this leads to tearing effect. Below steps describes the issue: 1)Initially assume both buffers FB0 and FB1 are programmed for buffer-0. 2)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0 (which is being filled), leading to tearing/flickering issue. 3)On EOF1: Program FB1 for buffer-0, indicate(wake up) application to fill up buffer-1. As FB0 is active and continues to DMA buffer-1(which is being filled), leading to tearing/flickering issue. 4)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0(which is being filled), leading to tearing/flickering issue. ... Above steps depict that issue is because of 1 frame delay in frame panned by application. Patch fixes the issue by keeping track free DMA channel and configures it in drivers PAN callback so that panned frame from application gets displayed in next frame period. Wiki below describes the issue in detail and it also has link to application with which issue can be reproduced. http://processors.wiki.ti.com/index.php/DA8xx_LCDC_Linux_FB_FAQs Signed-off-by: Nellutla, Aditya <aditya.n@ti.com> Signed-off-by: Manjunathappa, Prakash <prakash.pm@ti.com> Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
2012-07-18 15:31:56 +00:00
spin_lock_irqsave(&par->lock_for_chan_update,
irq_flags);
if (par->which_dma_channel_done == 0) {
lcdc_write(par->dma_start,
LCD_DMA_FRM_BUF_BASE_ADDR_0_REG);
lcdc_write(par->dma_end,
LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG);
} else if (par->which_dma_channel_done == 1) {
lcdc_write(par->dma_start,
LCD_DMA_FRM_BUF_BASE_ADDR_1_REG);
lcdc_write(par->dma_end,
LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG);
}
spin_unlock_irqrestore(&par->lock_for_chan_update,
irq_flags);
}
}
return ret;
}
static struct fb_ops da8xx_fb_ops = {
.owner = THIS_MODULE,
.fb_check_var = fb_check_var,
.fb_setcolreg = fb_setcolreg,
.fb_pan_display = da8xx_pan_display,
.fb_ioctl = fb_ioctl,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_blank = cfb_blank,
};
/* Calculate and return pixel clock period in pico seconds */
static unsigned int da8xxfb_pixel_clk_period(struct da8xx_fb_par *par)
{
unsigned int lcd_clk, div;
unsigned int configured_pix_clk;
unsigned long long pix_clk_period_picosec = 1000000000000ULL;
lcd_clk = clk_get_rate(par->lcdc_clk);
div = lcd_clk / par->pxl_clk;
configured_pix_clk = (lcd_clk / div);
do_div(pix_clk_period_picosec, configured_pix_clk);
return pix_clk_period_picosec;
}
static int fb_probe(struct platform_device *device)
{
struct da8xx_lcdc_platform_data *fb_pdata =
device->dev.platform_data;
struct lcd_ctrl_config *lcd_cfg;
struct fb_videomode *lcdc_info;
struct fb_info *da8xx_fb_info;
struct clk *fb_clk = NULL;
struct da8xx_fb_par *par;
resource_size_t len;
int ret, i;
unsigned long ulcm;
if (fb_pdata == NULL) {
dev_err(&device->dev, "Can not get platform data\n");
return -ENOENT;
}
lcdc_regs = platform_get_resource(device, IORESOURCE_MEM, 0);
if (!lcdc_regs) {
dev_err(&device->dev,
"Can not get memory resource for LCD controller\n");
return -ENOENT;
}
len = resource_size(lcdc_regs);
lcdc_regs = request_mem_region(lcdc_regs->start, len, lcdc_regs->name);
if (!lcdc_regs)
return -EBUSY;
da8xx_fb_reg_base = ioremap(lcdc_regs->start, len);
if (!da8xx_fb_reg_base) {
ret = -EBUSY;
goto err_request_mem;
}
fb_clk = clk_get(&device->dev, "fck");
if (IS_ERR(fb_clk)) {
dev_err(&device->dev, "Can not get device clock\n");
ret = -ENODEV;
goto err_ioremap;
}
pm_runtime_enable(&device->dev);
pm_runtime_get_sync(&device->dev);
/* Determine LCD IP Version */
switch (lcdc_read(LCD_PID_REG)) {
case 0x4C100102:
lcd_revision = LCD_VERSION_1;
break;
case 0x4F200800:
case 0x4F201000:
lcd_revision = LCD_VERSION_2;
break;
default:
dev_warn(&device->dev, "Unknown PID Reg value 0x%x, "
"defaulting to LCD revision 1\n",
lcdc_read(LCD_PID_REG));
lcd_revision = LCD_VERSION_1;
break;
}
for (i = 0, lcdc_info = known_lcd_panels;
i < ARRAY_SIZE(known_lcd_panels);
i++, lcdc_info++) {
if (strcmp(fb_pdata->type, lcdc_info->name) == 0)
break;
}
if (i == ARRAY_SIZE(known_lcd_panels)) {
dev_err(&device->dev, "GLCD: No valid panel found\n");
ret = -ENODEV;
goto err_pm_runtime_disable;
} else
dev_info(&device->dev, "GLCD: Found %s panel\n",
fb_pdata->type);
lcd_cfg = (struct lcd_ctrl_config *)fb_pdata->controller_data;
da8xx_fb_info = framebuffer_alloc(sizeof(struct da8xx_fb_par),
&device->dev);
if (!da8xx_fb_info) {
dev_dbg(&device->dev, "Memory allocation failed for fb_info\n");
ret = -ENOMEM;
goto err_pm_runtime_disable;
}
par = da8xx_fb_info->par;
par->lcdc_clk = fb_clk;
#ifdef CONFIG_CPU_FREQ
par->lcd_fck_rate = clk_get_rate(fb_clk);
#endif
par->pxl_clk = lcdc_info->pixclock;
if (fb_pdata->panel_power_ctrl) {
par->panel_power_ctrl = fb_pdata->panel_power_ctrl;
par->panel_power_ctrl(1);
}
if (lcd_init(par, lcd_cfg, lcdc_info) < 0) {
dev_err(&device->dev, "lcd_init failed\n");
ret = -EFAULT;
goto err_release_fb;
}
/* allocate frame buffer */
par->vram_size = lcdc_info->xres * lcdc_info->yres * lcd_cfg->bpp;
ulcm = lcm((lcdc_info->xres * lcd_cfg->bpp)/8, PAGE_SIZE);
par->vram_size = roundup(par->vram_size/8, ulcm);
par->vram_size = par->vram_size * LCD_NUM_BUFFERS;
par->vram_virt = dma_alloc_coherent(NULL,
par->vram_size,
(resource_size_t *) &par->vram_phys,
GFP_KERNEL | GFP_DMA);
if (!par->vram_virt) {
dev_err(&device->dev,
"GLCD: kmalloc for frame buffer failed\n");
ret = -EINVAL;
goto err_release_fb;
}
da8xx_fb_info->screen_base = (char __iomem *) par->vram_virt;
da8xx_fb_fix.smem_start = par->vram_phys;
da8xx_fb_fix.smem_len = par->vram_size;
da8xx_fb_fix.line_length = (lcdc_info->xres * lcd_cfg->bpp) / 8;
par->dma_start = par->vram_phys;
par->dma_end = par->dma_start + lcdc_info->yres *
da8xx_fb_fix.line_length - 1;
/* allocate palette buffer */
par->v_palette_base = dma_alloc_coherent(NULL,
PALETTE_SIZE,
(resource_size_t *)
&par->p_palette_base,
GFP_KERNEL | GFP_DMA);
if (!par->v_palette_base) {
dev_err(&device->dev,
"GLCD: kmalloc for palette buffer failed\n");
ret = -EINVAL;
goto err_release_fb_mem;
}
memset(par->v_palette_base, 0, PALETTE_SIZE);
par->irq = platform_get_irq(device, 0);
if (par->irq < 0) {
ret = -ENOENT;
goto err_release_pl_mem;
}
/* Initialize par */
da8xx_fb_info->var.bits_per_pixel = lcd_cfg->bpp;
da8xx_fb_var.xres = lcdc_info->xres;
da8xx_fb_var.xres_virtual = lcdc_info->xres;
da8xx_fb_var.yres = lcdc_info->yres;
da8xx_fb_var.yres_virtual = lcdc_info->yres * LCD_NUM_BUFFERS;
da8xx_fb_var.grayscale =
lcd_cfg->panel_shade == MONOCHROME ? 1 : 0;
da8xx_fb_var.bits_per_pixel = lcd_cfg->bpp;
da8xx_fb_var.hsync_len = lcdc_info->hsync_len;
da8xx_fb_var.vsync_len = lcdc_info->vsync_len;
da8xx_fb_var.right_margin = lcdc_info->right_margin;
da8xx_fb_var.left_margin = lcdc_info->left_margin;
da8xx_fb_var.lower_margin = lcdc_info->lower_margin;
da8xx_fb_var.upper_margin = lcdc_info->upper_margin;
da8xx_fb_var.pixclock = da8xxfb_pixel_clk_period(par);
/* Initialize fbinfo */
da8xx_fb_info->flags = FBINFO_FLAG_DEFAULT;
da8xx_fb_info->fix = da8xx_fb_fix;
da8xx_fb_info->var = da8xx_fb_var;
da8xx_fb_info->fbops = &da8xx_fb_ops;
da8xx_fb_info->pseudo_palette = par->pseudo_palette;
da8xx_fb_info->fix.visual = (da8xx_fb_info->var.bits_per_pixel <= 8) ?
FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR;
ret = fb_alloc_cmap(&da8xx_fb_info->cmap, PALETTE_SIZE, 0);
if (ret)
goto err_release_pl_mem;
da8xx_fb_info->cmap.len = par->palette_sz;
/* initialize var_screeninfo */
da8xx_fb_var.activate = FB_ACTIVATE_FORCE;
fb_set_var(da8xx_fb_info, &da8xx_fb_var);
dev_set_drvdata(&device->dev, da8xx_fb_info);
/* initialize the vsync wait queue */
init_waitqueue_head(&par->vsync_wait);
par->vsync_timeout = HZ / 5;
video: da8xx-fb: fix flicker due to 1 frame delay in updated frame Flicker/tearing effect is observed with current FB driver. Issue is because of 2 active DMA channels ping ponging among them along with usage of 2 DDR ping pong buffers in driver. Application unaware of active DMA channel keeps updating frame being displayed, this leads to tearing effect. Below steps describes the issue: 1)Initially assume both buffers FB0 and FB1 are programmed for buffer-0. 2)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0 (which is being filled), leading to tearing/flickering issue. 3)On EOF1: Program FB1 for buffer-0, indicate(wake up) application to fill up buffer-1. As FB0 is active and continues to DMA buffer-1(which is being filled), leading to tearing/flickering issue. 4)On EOF0: Program FB0 for buffer-1, indicate(wake up) application to fill up buffer-0. As FB1 is active and continues to DMA buffer-0(which is being filled), leading to tearing/flickering issue. ... Above steps depict that issue is because of 1 frame delay in frame panned by application. Patch fixes the issue by keeping track free DMA channel and configures it in drivers PAN callback so that panned frame from application gets displayed in next frame period. Wiki below describes the issue in detail and it also has link to application with which issue can be reproduced. http://processors.wiki.ti.com/index.php/DA8xx_LCDC_Linux_FB_FAQs Signed-off-by: Nellutla, Aditya <aditya.n@ti.com> Signed-off-by: Manjunathappa, Prakash <prakash.pm@ti.com> Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
2012-07-18 15:31:56 +00:00
par->which_dma_channel_done = -1;
spin_lock_init(&par->lock_for_chan_update);
/* Register the Frame Buffer */
if (register_framebuffer(da8xx_fb_info) < 0) {
dev_err(&device->dev,
"GLCD: Frame Buffer Registration Failed!\n");
ret = -EINVAL;
goto err_dealloc_cmap;
}
#ifdef CONFIG_CPU_FREQ
ret = lcd_da8xx_cpufreq_register(par);
if (ret) {
dev_err(&device->dev, "failed to register cpufreq\n");
goto err_cpu_freq;
}
#endif
if (lcd_revision == LCD_VERSION_1)
lcdc_irq_handler = lcdc_irq_handler_rev01;
else {
init_waitqueue_head(&frame_done_wq);
lcdc_irq_handler = lcdc_irq_handler_rev02;
}
ret = request_irq(par->irq, lcdc_irq_handler, 0,
DRIVER_NAME, par);
if (ret)
goto irq_freq;
return 0;
irq_freq:
#ifdef CONFIG_CPU_FREQ
lcd_da8xx_cpufreq_deregister(par);
err_cpu_freq:
#endif
unregister_framebuffer(da8xx_fb_info);
err_dealloc_cmap:
fb_dealloc_cmap(&da8xx_fb_info->cmap);
err_release_pl_mem:
dma_free_coherent(NULL, PALETTE_SIZE, par->v_palette_base,
par->p_palette_base);
err_release_fb_mem:
dma_free_coherent(NULL, par->vram_size, par->vram_virt, par->vram_phys);
err_release_fb:
framebuffer_release(da8xx_fb_info);
err_pm_runtime_disable:
pm_runtime_put_sync(&device->dev);
pm_runtime_disable(&device->dev);
err_ioremap:
iounmap(da8xx_fb_reg_base);
err_request_mem:
release_mem_region(lcdc_regs->start, len);
return ret;
}
#ifdef CONFIG_PM
struct lcdc_context {
u32 clk_enable;
u32 ctrl;
u32 dma_ctrl;
u32 raster_timing_0;
u32 raster_timing_1;
u32 raster_timing_2;
u32 int_enable_set;
u32 dma_frm_buf_base_addr_0;
u32 dma_frm_buf_ceiling_addr_0;
u32 dma_frm_buf_base_addr_1;
u32 dma_frm_buf_ceiling_addr_1;
u32 raster_ctrl;
} reg_context;
static void lcd_context_save(void)
{
if (lcd_revision == LCD_VERSION_2) {
reg_context.clk_enable = lcdc_read(LCD_CLK_ENABLE_REG);
reg_context.int_enable_set = lcdc_read(LCD_INT_ENABLE_SET_REG);
}
reg_context.ctrl = lcdc_read(LCD_CTRL_REG);
reg_context.dma_ctrl = lcdc_read(LCD_DMA_CTRL_REG);
reg_context.raster_timing_0 = lcdc_read(LCD_RASTER_TIMING_0_REG);
reg_context.raster_timing_1 = lcdc_read(LCD_RASTER_TIMING_1_REG);
reg_context.raster_timing_2 = lcdc_read(LCD_RASTER_TIMING_2_REG);
reg_context.dma_frm_buf_base_addr_0 =
lcdc_read(LCD_DMA_FRM_BUF_BASE_ADDR_0_REG);
reg_context.dma_frm_buf_ceiling_addr_0 =
lcdc_read(LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG);
reg_context.dma_frm_buf_base_addr_1 =
lcdc_read(LCD_DMA_FRM_BUF_BASE_ADDR_1_REG);
reg_context.dma_frm_buf_ceiling_addr_1 =
lcdc_read(LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG);
reg_context.raster_ctrl = lcdc_read(LCD_RASTER_CTRL_REG);
return;
}
static void lcd_context_restore(void)
{
if (lcd_revision == LCD_VERSION_2) {
lcdc_write(reg_context.clk_enable, LCD_CLK_ENABLE_REG);
lcdc_write(reg_context.int_enable_set, LCD_INT_ENABLE_SET_REG);
}
lcdc_write(reg_context.ctrl, LCD_CTRL_REG);
lcdc_write(reg_context.dma_ctrl, LCD_DMA_CTRL_REG);
lcdc_write(reg_context.raster_timing_0, LCD_RASTER_TIMING_0_REG);
lcdc_write(reg_context.raster_timing_1, LCD_RASTER_TIMING_1_REG);
lcdc_write(reg_context.raster_timing_2, LCD_RASTER_TIMING_2_REG);
lcdc_write(reg_context.dma_frm_buf_base_addr_0,
LCD_DMA_FRM_BUF_BASE_ADDR_0_REG);
lcdc_write(reg_context.dma_frm_buf_ceiling_addr_0,
LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG);
lcdc_write(reg_context.dma_frm_buf_base_addr_1,
LCD_DMA_FRM_BUF_BASE_ADDR_1_REG);
lcdc_write(reg_context.dma_frm_buf_ceiling_addr_1,
LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG);
lcdc_write(reg_context.raster_ctrl, LCD_RASTER_CTRL_REG);
return;
}
static int fb_suspend(struct platform_device *dev, pm_message_t state)
{
struct fb_info *info = platform_get_drvdata(dev);
struct da8xx_fb_par *par = info->par;
console_lock();
if (par->panel_power_ctrl)
par->panel_power_ctrl(0);
fb_set_suspend(info, 1);
lcd_disable_raster(true);
lcd_context_save();
pm_runtime_put_sync(&dev->dev);
console_unlock();
return 0;
}
static int fb_resume(struct platform_device *dev)
{
struct fb_info *info = platform_get_drvdata(dev);
struct da8xx_fb_par *par = info->par;
console_lock();
pm_runtime_get_sync(&dev->dev);
lcd_context_restore();
if (par->blank == FB_BLANK_UNBLANK) {
lcd_enable_raster();
if (par->panel_power_ctrl)
par->panel_power_ctrl(1);
}
fb_set_suspend(info, 0);
console_unlock();
return 0;
}
#else
#define fb_suspend NULL
#define fb_resume NULL
#endif
static struct platform_driver da8xx_fb_driver = {
.probe = fb_probe,
.remove = fb_remove,
.suspend = fb_suspend,
.resume = fb_resume,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
},
};
static int __init da8xx_fb_init(void)
{
return platform_driver_register(&da8xx_fb_driver);
}
static void __exit da8xx_fb_cleanup(void)
{
platform_driver_unregister(&da8xx_fb_driver);
}
module_init(da8xx_fb_init);
module_exit(da8xx_fb_cleanup);
MODULE_DESCRIPTION("Framebuffer driver for TI da8xx/omap-l1xx");
MODULE_AUTHOR("Texas Instruments");
MODULE_LICENSE("GPL");