android_kernel_samsung_msm8976/drivers/crypto/msm/qce50.c

5527 lines
158 KiB
C

/* Qualcomm Crypto Engine driver.
*
* Copyright (c) 2012-2015, 2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "QCE50: %s: " fmt, __func__
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/device.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/crypto.h>
#include <linux/bitops.h>
#include <linux/clk/msm-clk.h>
#include <linux/qcrypto.h>
#include <crypto/hash.h>
#include <crypto/sha.h>
#include <soc/qcom/socinfo.h>
#include "qce.h"
#include "qce50.h"
#include "qcryptohw_50.h"
#include "qce_ota.h"
#define CRYPTO_CONFIG_RESET 0xE01EF
#define QCE_MAX_NUM_DSCR 0x500
#define QCE_SECTOR_SIZE 0x200
#define CE_CLK_100MHZ 100000000
#define CE_CLK_DIV 1000000
#define CRYPTO_CORE_MAJOR_VER_NUM 0x05
#define CRYPTO_CORE_MINOR_VER_NUM 0x03
static DEFINE_MUTEX(bam_register_lock);
static DEFINE_MUTEX(qce_iomap_mutex);
struct bam_registration_info {
struct list_head qlist;
unsigned long handle;
uint32_t cnt;
uint32_t bam_mem;
void __iomem *bam_iobase;
bool support_cmd_dscr;
};
static LIST_HEAD(qce50_bam_list);
/*
* CE HW device structure.
* Each engine has an instance of the structure.
* Each engine can only handle one crypto operation at one time. It is up to
* the sw above to ensure single threading of operation on an engine.
*/
struct qce_device {
struct device *pdev; /* Handle to platform_device structure */
struct bam_registration_info *pbam;
unsigned char *coh_vmem; /* Allocated coherent virtual memory */
dma_addr_t coh_pmem; /* Allocated coherent physical memory */
int memsize; /* Memory allocated */
uint32_t bam_mem; /* bam physical address, from DT */
uint32_t bam_mem_size; /* bam io size, from DT */
int is_shared; /* CE HW is shared */
bool support_cmd_dscr;
bool support_hw_key;
bool support_clk_mgmt_sus_res;
bool support_only_core_src_clk;
void __iomem *iobase; /* Virtual io base of CE HW */
unsigned int phy_iobase; /* Physical io base of CE HW */
struct clk *ce_core_src_clk; /* Handle to CE src clk*/
struct clk *ce_core_clk; /* Handle to CE clk */
struct clk *ce_clk; /* Handle to CE clk */
struct clk *ce_bus_clk; /* Handle to CE AXI clk*/
bool no_get_around;
qce_comp_func_ptr_t qce_cb; /* qce callback function pointer */
int assoc_nents;
int ivsize;
int authsize;
int src_nents;
int dst_nents;
dma_addr_t phy_iv_in;
unsigned char dec_iv[16];
int dir;
void *areq;
enum qce_cipher_mode_enum mode;
struct qce_ce_cfg_reg_setting reg;
struct ce_sps_data ce_sps;
uint32_t engines_avail;
dma_addr_t phy_ota_src;
dma_addr_t phy_ota_dst;
unsigned int ota_size;
unsigned int ce_opp_freq_hz;
bool use_sw_aes_cbc_ecb_ctr_algo;
bool use_sw_aead_algo;
bool use_sw_aes_xts_algo;
bool use_sw_ahash_algo;
bool use_sw_hmac_algo;
bool use_sw_aes_ccm_algo;
};
/* Standard initialization vector for SHA-1, source: FIPS 180-2 */
static uint32_t _std_init_vector_sha1[] = {
0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0
};
/* Standard initialization vector for SHA-256, source: FIPS 180-2 */
static uint32_t _std_init_vector_sha256[] = {
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
static void _byte_stream_to_net_words(uint32_t *iv, unsigned char *b,
unsigned int len)
{
unsigned n;
n = len / sizeof(uint32_t);
for (; n > 0; n--) {
*iv = ((*b << 24) & 0xff000000) |
(((*(b+1)) << 16) & 0xff0000) |
(((*(b+2)) << 8) & 0xff00) |
(*(b+3) & 0xff);
b += sizeof(uint32_t);
iv++;
}
n = len % sizeof(uint32_t);
if (n == 3) {
*iv = ((*b << 24) & 0xff000000) |
(((*(b+1)) << 16) & 0xff0000) |
(((*(b+2)) << 8) & 0xff00);
} else if (n == 2) {
*iv = ((*b << 24) & 0xff000000) |
(((*(b+1)) << 16) & 0xff0000);
} else if (n == 1) {
*iv = ((*b << 24) & 0xff000000);
}
}
static void _byte_stream_swap_to_net_words(uint32_t *iv, unsigned char *b,
unsigned int len)
{
unsigned i, j;
unsigned char swap_iv[AES_IV_LENGTH];
memset(swap_iv, 0, AES_IV_LENGTH);
for (i = (AES_IV_LENGTH-len), j = len-1; i < AES_IV_LENGTH; i++, j--)
swap_iv[i] = b[j];
_byte_stream_to_net_words(iv, swap_iv, AES_IV_LENGTH);
}
static int count_sg(struct scatterlist *sg, int nbytes)
{
int i;
for (i = 0; (nbytes > 0) && sg; i++, sg = scatterwalk_sg_next(sg))
nbytes -= sg->length;
return i;
}
static int qce_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction direction)
{
int i;
for (i = 0; (i < nents) && sg; ++i) {
dma_map_sg(dev, sg, 1, direction);
sg = scatterwalk_sg_next(sg);
}
return nents;
}
static int qce_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction direction)
{
int i;
for (i = 0; (i < nents) && sg; ++i) {
dma_unmap_sg(dev, sg, 1, direction);
sg = scatterwalk_sg_next(sg);
}
return nents;
}
static int _probe_ce_engine(struct qce_device *pce_dev)
{
unsigned int rev;
unsigned int maj_rev, min_rev, step_rev;
rev = readl_relaxed(pce_dev->iobase + CRYPTO_VERSION_REG);
mb();
maj_rev = (rev & CRYPTO_CORE_MAJOR_REV_MASK) >> CRYPTO_CORE_MAJOR_REV;
min_rev = (rev & CRYPTO_CORE_MINOR_REV_MASK) >> CRYPTO_CORE_MINOR_REV;
step_rev = (rev & CRYPTO_CORE_STEP_REV_MASK) >> CRYPTO_CORE_STEP_REV;
if (maj_rev != CRYPTO_CORE_MAJOR_VER_NUM) {
pr_err("Unsupported Qualcomm crypto device at 0x%x, rev %d.%d.%d\n",
pce_dev->phy_iobase, maj_rev, min_rev, step_rev);
return -EIO;
} else {
pce_dev->no_get_around = (min_rev >=
CRYPTO_CORE_MINOR_VER_NUM) ? true : false;
}
pce_dev->ce_sps.minor_version = min_rev;
pce_dev->engines_avail = readl_relaxed(pce_dev->iobase +
CRYPTO_ENGINES_AVAIL);
dev_info(pce_dev->pdev, "Qualcomm Crypto %d.%d.%d device found @0x%x\n",
maj_rev, min_rev, step_rev, pce_dev->phy_iobase);
pce_dev->ce_sps.ce_burst_size = MAX_CE_BAM_BURST_SIZE;
dev_info(pce_dev->pdev,
"CE device = 0x%x\n"
"IO base, CE = 0x%pK\n"
"Consumer (IN) PIPE %d, "
"Producer (OUT) PIPE %d\n"
"IO base BAM = 0x%pK\n"
"BAM IRQ %d\n"
"Engines Availability = 0x%x\n",
pce_dev->ce_sps.ce_device,
pce_dev->iobase,
pce_dev->ce_sps.dest_pipe_index,
pce_dev->ce_sps.src_pipe_index,
pce_dev->ce_sps.bam_iobase,
pce_dev->ce_sps.bam_irq,
pce_dev->engines_avail);
return 0;
};
static struct qce_cmdlist_info *_ce_get_hash_cmdlistinfo(
struct qce_device *pce_dev, struct qce_sha_req *sreq)
{
struct qce_cmdlistptr_ops *cmdlistptr = &pce_dev->ce_sps.cmdlistptr;
switch (sreq->alg) {
case QCE_HASH_SHA1:
return &cmdlistptr->auth_sha1;
case QCE_HASH_SHA256:
return &cmdlistptr->auth_sha256;
case QCE_HASH_SHA1_HMAC:
return &cmdlistptr->auth_sha1_hmac;
case QCE_HASH_SHA256_HMAC:
return &cmdlistptr->auth_sha256_hmac;
case QCE_HASH_AES_CMAC:
if (sreq->authklen == AES128_KEY_SIZE)
return &cmdlistptr->auth_aes_128_cmac;
return &cmdlistptr->auth_aes_256_cmac;
default:
return NULL;
}
return NULL;
}
static int _ce_setup_hash(struct qce_device *pce_dev,
struct qce_sha_req *sreq,
struct qce_cmdlist_info *cmdlistinfo)
{
uint32_t auth32[SHA256_DIGEST_SIZE / sizeof(uint32_t)];
uint32_t diglen;
int i;
uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
bool sha1 = false;
struct sps_command_element *pce = NULL;
bool use_hw_key = false;
bool use_pipe_key = false;
uint32_t authk_size_in_word = sreq->authklen/sizeof(uint32_t);
uint32_t auth_cfg;
if ((sreq->alg == QCE_HASH_SHA1_HMAC) ||
(sreq->alg == QCE_HASH_SHA256_HMAC) ||
(sreq->alg == QCE_HASH_AES_CMAC)) {
/* no more check for null key. use flag */
if ((sreq->flags & QCRYPTO_CTX_USE_HW_KEY)
== QCRYPTO_CTX_USE_HW_KEY)
use_hw_key = true;
else if ((sreq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
QCRYPTO_CTX_USE_PIPE_KEY)
use_pipe_key = true;
pce = cmdlistinfo->go_proc;
if (use_hw_key == true) {
pce->addr = (uint32_t)(CRYPTO_GOPROC_QC_KEY_REG +
pce_dev->phy_iobase);
} else {
pce->addr = (uint32_t)(CRYPTO_GOPROC_REG +
pce_dev->phy_iobase);
pce = cmdlistinfo->auth_key;
if (use_pipe_key == false) {
_byte_stream_to_net_words(mackey32,
sreq->authkey,
sreq->authklen);
for (i = 0; i < authk_size_in_word; i++, pce++)
pce->data = mackey32[i];
}
}
}
if (sreq->alg == QCE_HASH_AES_CMAC)
goto go_proc;
/* if not the last, the size has to be on the block boundary */
if (sreq->last_blk == 0 && (sreq->size % SHA256_BLOCK_SIZE))
return -EIO;
switch (sreq->alg) {
case QCE_HASH_SHA1:
case QCE_HASH_SHA1_HMAC:
diglen = SHA1_DIGEST_SIZE;
sha1 = true;
break;
case QCE_HASH_SHA256:
case QCE_HASH_SHA256_HMAC:
diglen = SHA256_DIGEST_SIZE;
break;
default:
return -EINVAL;
}
/* write 20/32 bytes, 5/8 words into auth_iv for SHA1/SHA256 */
if (sreq->first_blk) {
if (sha1) {
for (i = 0; i < 5; i++)
auth32[i] = _std_init_vector_sha1[i];
} else {
for (i = 0; i < 8; i++)
auth32[i] = _std_init_vector_sha256[i];
}
} else {
_byte_stream_to_net_words(auth32, sreq->digest, diglen);
}
pce = cmdlistinfo->auth_iv;
for (i = 0; i < 5; i++, pce++)
pce->data = auth32[i];
if ((sreq->alg == QCE_HASH_SHA256) ||
(sreq->alg == QCE_HASH_SHA256_HMAC)) {
for (i = 5; i < 8; i++, pce++)
pce->data = auth32[i];
}
/* write auth_bytecnt 0/1, start with 0 */
pce = cmdlistinfo->auth_bytecount;
for (i = 0; i < 2; i++, pce++)
pce->data = sreq->auth_data[i];
/* Set/reset last bit in CFG register */
pce = cmdlistinfo->auth_seg_cfg;
auth_cfg = pce->data & ~(1 << CRYPTO_LAST |
1 << CRYPTO_FIRST |
1 << CRYPTO_USE_PIPE_KEY_AUTH |
1 << CRYPTO_USE_HW_KEY_AUTH);
if (sreq->last_blk)
auth_cfg |= 1 << CRYPTO_LAST;
if (sreq->first_blk)
auth_cfg |= 1 << CRYPTO_FIRST;
if (use_hw_key)
auth_cfg |= 1 << CRYPTO_USE_HW_KEY_AUTH;
if (use_pipe_key)
auth_cfg |= 1 << CRYPTO_USE_PIPE_KEY_AUTH;
pce->data = auth_cfg;
go_proc:
/* write auth seg size */
pce = cmdlistinfo->auth_seg_size;
pce->data = sreq->size;
pce = cmdlistinfo->encr_seg_cfg;
pce->data = 0;
/* write auth seg size start*/
pce = cmdlistinfo->auth_seg_start;
pce->data = 0;
/* write seg size */
pce = cmdlistinfo->seg_size;
/* always ensure there is input data. ZLT does not work for bam-ndp */
if (sreq->size)
pce->data = sreq->size;
else
pce->data = pce_dev->ce_sps.ce_burst_size;
return 0;
}
static struct qce_cmdlist_info *_ce_get_aead_cmdlistinfo(
struct qce_device *pce_dev, struct qce_req *creq)
{
switch (creq->alg) {
case CIPHER_ALG_DES:
switch (creq->mode) {
case QCE_MODE_CBC:
if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
return &pce_dev->ce_sps.
cmdlistptr.aead_hmac_sha1_cbc_des;
else if (creq->auth_alg == QCE_HASH_SHA256_HMAC)
return &pce_dev->ce_sps.
cmdlistptr.aead_hmac_sha256_cbc_des;
else
return NULL;
break;
default:
return NULL;
}
break;
case CIPHER_ALG_3DES:
switch (creq->mode) {
case QCE_MODE_CBC:
if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
return &pce_dev->ce_sps.
cmdlistptr.aead_hmac_sha1_cbc_3des;
else if (creq->auth_alg == QCE_HASH_SHA256_HMAC)
return &pce_dev->ce_sps.
cmdlistptr.aead_hmac_sha256_cbc_3des;
else
return NULL;
break;
default:
return NULL;
}
break;
case CIPHER_ALG_AES:
switch (creq->mode) {
case QCE_MODE_CBC:
if (creq->encklen == AES128_KEY_SIZE) {
if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
return &pce_dev->ce_sps.cmdlistptr.
aead_hmac_sha1_cbc_aes_128;
else if (creq->auth_alg ==
QCE_HASH_SHA256_HMAC)
return &pce_dev->ce_sps.cmdlistptr.
aead_hmac_sha256_cbc_aes_128;
else
return NULL;
} else if (creq->encklen == AES256_KEY_SIZE) {
if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
return &pce_dev->ce_sps.cmdlistptr.
aead_hmac_sha1_cbc_aes_256;
else if (creq->auth_alg ==
QCE_HASH_SHA256_HMAC)
return &pce_dev->ce_sps.cmdlistptr.
aead_hmac_sha256_cbc_aes_256;
else
return NULL;
} else
return NULL;
break;
default:
return NULL;
}
break;
default:
return NULL;
}
return NULL;
}
static int _ce_setup_aead(struct qce_device *pce_dev, struct qce_req *q_req,
uint32_t totallen_in, uint32_t coffset,
struct qce_cmdlist_info *cmdlistinfo)
{
int32_t authk_size_in_word = SHA_HMAC_KEY_SIZE/sizeof(uint32_t);
int i;
uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {0};
struct sps_command_element *pce;
uint32_t a_cfg;
uint32_t enckey32[(MAX_CIPHER_KEY_SIZE*2)/sizeof(uint32_t)] = {0};
uint32_t enciv32[MAX_IV_LENGTH/sizeof(uint32_t)] = {0};
uint32_t enck_size_in_word = 0;
uint32_t enciv_in_word;
uint32_t key_size;
uint32_t encr_cfg = 0;
uint32_t ivsize = q_req->ivsize;
key_size = q_req->encklen;
enck_size_in_word = key_size/sizeof(uint32_t);
switch (q_req->alg) {
case CIPHER_ALG_DES:
enciv_in_word = 2;
break;
case CIPHER_ALG_3DES:
enciv_in_word = 2;
break;
case CIPHER_ALG_AES:
if ((key_size != AES128_KEY_SIZE) &&
(key_size != AES256_KEY_SIZE))
return -EINVAL;
enciv_in_word = 4;
break;
default:
return -EINVAL;
}
switch (q_req->mode) {
case QCE_MODE_CBC:
pce_dev->mode = q_req->mode;
break;
default:
return -EINVAL;
}
if (q_req->mode != QCE_MODE_ECB) {
_byte_stream_to_net_words(enciv32, q_req->iv, ivsize);
pce = cmdlistinfo->encr_cntr_iv;
for (i = 0; i < enciv_in_word; i++, pce++)
pce->data = enciv32[i];
}
/*
* write encr key
* do not use hw key or pipe key
*/
_byte_stream_to_net_words(enckey32, q_req->enckey, key_size);
pce = cmdlistinfo->encr_key;
for (i = 0; i < enck_size_in_word; i++, pce++)
pce->data = enckey32[i];
/* write encr seg cfg */
pce = cmdlistinfo->encr_seg_cfg;
encr_cfg = pce->data;
if (q_req->dir == QCE_ENCRYPT)
encr_cfg |= (1 << CRYPTO_ENCODE);
else
encr_cfg &= ~(1 << CRYPTO_ENCODE);
pce->data = encr_cfg;
/* we only support sha1-hmac and sha256-hmac at this point */
_byte_stream_to_net_words(mackey32, q_req->authkey,
q_req->authklen);
pce = cmdlistinfo->auth_key;
for (i = 0; i < authk_size_in_word; i++, pce++)
pce->data = mackey32[i];
pce = cmdlistinfo->auth_iv;
if (q_req->auth_alg == QCE_HASH_SHA1_HMAC)
for (i = 0; i < 5; i++, pce++)
pce->data = _std_init_vector_sha1[i];
else
for (i = 0; i < 8; i++, pce++)
pce->data = _std_init_vector_sha256[i];
/* write auth_bytecnt 0/1, start with 0 */
pce = cmdlistinfo->auth_bytecount;
for (i = 0; i < 2; i++, pce++)
pce->data = 0;
pce = cmdlistinfo->auth_seg_cfg;
a_cfg = pce->data;
a_cfg &= ~(CRYPTO_AUTH_POS_MASK);
if (q_req->dir == QCE_ENCRYPT)
a_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
else
a_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
pce->data = a_cfg;
/* write auth seg size */
pce = cmdlistinfo->auth_seg_size;
pce->data = totallen_in;
/* write auth seg size start*/
pce = cmdlistinfo->auth_seg_start;
pce->data = 0;
/* write seg size */
pce = cmdlistinfo->seg_size;
pce->data = totallen_in;
/* write encr seg size */
pce = cmdlistinfo->encr_seg_size;
pce->data = q_req->cryptlen;
/* write encr seg start */
pce = cmdlistinfo->encr_seg_start;
pce->data = (coffset & 0xffff);
return 0;
};
static struct qce_cmdlist_info *_ce_get_cipher_cmdlistinfo(
struct qce_device *pce_dev, struct qce_req *creq)
{
struct qce_cmdlistptr_ops *cmdlistptr = &pce_dev->ce_sps.cmdlistptr;
if (creq->alg != CIPHER_ALG_AES) {
switch (creq->alg) {
case CIPHER_ALG_DES:
if (creq->mode == QCE_MODE_ECB)
return &cmdlistptr->cipher_des_ecb;
return &cmdlistptr->cipher_des_cbc;
case CIPHER_ALG_3DES:
if (creq->mode == QCE_MODE_ECB)
return &cmdlistptr->cipher_3des_ecb;
return &cmdlistptr->cipher_3des_cbc;
default:
return NULL;
}
} else {
switch (creq->mode) {
case QCE_MODE_ECB:
if (creq->encklen == AES128_KEY_SIZE)
return &cmdlistptr->cipher_aes_128_ecb;
return &cmdlistptr->cipher_aes_256_ecb;
case QCE_MODE_CBC:
case QCE_MODE_CTR:
if (creq->encklen == AES128_KEY_SIZE)
return &cmdlistptr->cipher_aes_128_cbc_ctr;
return &cmdlistptr->cipher_aes_256_cbc_ctr;
case QCE_MODE_XTS:
if (creq->encklen/2 == AES128_KEY_SIZE)
return &cmdlistptr->cipher_aes_128_xts;
return &cmdlistptr->cipher_aes_256_xts;
case QCE_MODE_CCM:
if (creq->encklen == AES128_KEY_SIZE)
return &cmdlistptr->aead_aes_128_ccm;
return &cmdlistptr->aead_aes_256_ccm;
default:
return NULL;
}
}
return NULL;
}
static int _ce_setup_cipher(struct qce_device *pce_dev, struct qce_req *creq,
uint32_t totallen_in, uint32_t coffset,
struct qce_cmdlist_info *cmdlistinfo)
{
uint32_t enckey32[(MAX_CIPHER_KEY_SIZE * 2)/sizeof(uint32_t)] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint32_t enciv32[MAX_IV_LENGTH / sizeof(uint32_t)] = {
0, 0, 0, 0};
uint32_t enck_size_in_word = 0;
uint32_t key_size;
bool use_hw_key = false;
bool use_pipe_key = false;
uint32_t encr_cfg = 0;
uint32_t ivsize = creq->ivsize;
int i;
struct sps_command_element *pce = NULL;
if (creq->mode == QCE_MODE_XTS)
key_size = creq->encklen/2;
else
key_size = creq->encklen;
pce = cmdlistinfo->go_proc;
if ((creq->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) {
use_hw_key = true;
} else {
if ((creq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
QCRYPTO_CTX_USE_PIPE_KEY)
use_pipe_key = true;
}
pce = cmdlistinfo->go_proc;
if (use_hw_key == true)
pce->addr = (uint32_t)(CRYPTO_GOPROC_QC_KEY_REG +
pce_dev->phy_iobase);
else
pce->addr = (uint32_t)(CRYPTO_GOPROC_REG +
pce_dev->phy_iobase);
if ((use_pipe_key == false) && (use_hw_key == false)) {
_byte_stream_to_net_words(enckey32, creq->enckey, key_size);
enck_size_in_word = key_size/sizeof(uint32_t);
}
if ((creq->op == QCE_REQ_AEAD) && (creq->mode == QCE_MODE_CCM)) {
uint32_t authklen32 = creq->encklen/sizeof(uint32_t);
uint32_t noncelen32 = MAX_NONCE/sizeof(uint32_t);
uint32_t nonce32[MAX_NONCE/sizeof(uint32_t)] = {0, 0, 0, 0};
uint32_t auth_cfg = 0;
/* write nonce */
_byte_stream_to_net_words(nonce32, creq->nonce, MAX_NONCE);
pce = cmdlistinfo->auth_nonce_info;
for (i = 0; i < noncelen32; i++, pce++)
pce->data = nonce32[i];
if (creq->authklen == AES128_KEY_SIZE)
auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_128;
else {
if (creq->authklen == AES256_KEY_SIZE)
auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_256;
}
if (creq->dir == QCE_ENCRYPT)
auth_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
else
auth_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
auth_cfg |= ((creq->authsize - 1) << CRYPTO_AUTH_SIZE);
if (use_hw_key == true) {
auth_cfg |= (1 << CRYPTO_USE_HW_KEY_AUTH);
} else {
auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
/* write auth key */
pce = cmdlistinfo->auth_key;
for (i = 0; i < authklen32; i++, pce++)
pce->data = enckey32[i];
}
pce = cmdlistinfo->auth_seg_cfg;
pce->data = auth_cfg;
pce = cmdlistinfo->auth_seg_size;
if (creq->dir == QCE_ENCRYPT)
pce->data = totallen_in;
else
pce->data = totallen_in - creq->authsize;
pce = cmdlistinfo->auth_seg_start;
pce->data = 0;
} else {
if (creq->op != QCE_REQ_AEAD) {
pce = cmdlistinfo->auth_seg_cfg;
pce->data = 0;
}
}
switch (creq->mode) {
case QCE_MODE_ECB:
if (key_size == AES128_KEY_SIZE)
encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_128;
else
encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_256;
break;
case QCE_MODE_CBC:
if (key_size == AES128_KEY_SIZE)
encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128;
else
encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256;
break;
case QCE_MODE_XTS:
if (key_size == AES128_KEY_SIZE)
encr_cfg = pce_dev->reg.encr_cfg_aes_xts_128;
else
encr_cfg = pce_dev->reg.encr_cfg_aes_xts_256;
break;
case QCE_MODE_CCM:
if (key_size == AES128_KEY_SIZE)
encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_128;
else
encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_256;
encr_cfg |= (CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE) |
(CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM);
break;
case QCE_MODE_CTR:
default:
if (key_size == AES128_KEY_SIZE)
encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_128;
else
encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_256;
break;
}
pce_dev->mode = creq->mode;
switch (creq->alg) {
case CIPHER_ALG_DES:
if (creq->mode != QCE_MODE_ECB) {
if (ivsize > MAX_IV_LENGTH) {
pr_err("%s: error: Invalid length parameter\n",
__func__);
return -EINVAL;
}
_byte_stream_to_net_words(enciv32, creq->iv, ivsize);
pce = cmdlistinfo->encr_cntr_iv;
pce->data = enciv32[0];
pce++;
pce->data = enciv32[1];
}
if (use_hw_key == false) {
pce = cmdlistinfo->encr_key;
pce->data = enckey32[0];
pce++;
pce->data = enckey32[1];
}
break;
case CIPHER_ALG_3DES:
if (creq->mode != QCE_MODE_ECB) {
_byte_stream_to_net_words(enciv32, creq->iv, ivsize);
pce = cmdlistinfo->encr_cntr_iv;
pce->data = enciv32[0];
pce++;
pce->data = enciv32[1];
}
if (use_hw_key == false) {
/* write encr key */
pce = cmdlistinfo->encr_key;
for (i = 0; i < 6; i++, pce++)
pce->data = enckey32[i];
}
break;
case CIPHER_ALG_AES:
default:
if (creq->mode == QCE_MODE_XTS) {
uint32_t xtskey32[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)]
= {0, 0, 0, 0, 0, 0, 0, 0};
uint32_t xtsklen =
creq->encklen/(2 * sizeof(uint32_t));
if ((use_hw_key == false) && (use_pipe_key == false)) {
_byte_stream_to_net_words(xtskey32,
(creq->enckey + creq->encklen/2),
creq->encklen/2);
/* write xts encr key */
pce = cmdlistinfo->encr_xts_key;
for (i = 0; i < xtsklen; i++, pce++)
pce->data = xtskey32[i];
}
/* write xts du size */
pce = cmdlistinfo->encr_xts_du_size;
switch (creq->flags & QCRYPTO_CTX_XTS_MASK) {
case QCRYPTO_CTX_XTS_DU_SIZE_512B:
pce->data = min((unsigned int)QCE_SECTOR_SIZE,
creq->cryptlen);
break;
case QCRYPTO_CTX_XTS_DU_SIZE_1KB:
pce->data =
min((unsigned int)QCE_SECTOR_SIZE * 2,
creq->cryptlen);
break;
default:
pce->data = creq->cryptlen;
break;
}
}
if (creq->mode != QCE_MODE_ECB) {
if (creq->mode == QCE_MODE_XTS)
_byte_stream_swap_to_net_words(enciv32,
creq->iv, ivsize);
else
_byte_stream_to_net_words(enciv32, creq->iv,
ivsize);
/* write encr cntr iv */
pce = cmdlistinfo->encr_cntr_iv;
for (i = 0; i < 4; i++, pce++)
pce->data = enciv32[i];
if (creq->mode == QCE_MODE_CCM) {
/* write cntr iv for ccm */
pce = cmdlistinfo->encr_ccm_cntr_iv;
for (i = 0; i < 4; i++, pce++)
pce->data = enciv32[i];
/* update cntr_iv[3] by one */
pce = cmdlistinfo->encr_cntr_iv;
pce += 3;
pce->data += 1;
}
}
if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) {
encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 <<
CRYPTO_ENCR_KEY_SZ);
} else {
if (use_hw_key == false) {
/* write encr key */
pce = cmdlistinfo->encr_key;
for (i = 0; i < enck_size_in_word; i++, pce++)
pce->data = enckey32[i];
}
} /* else of if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) */
break;
} /* end of switch (creq->mode) */
if (use_pipe_key)
encr_cfg |= (CRYPTO_USE_PIPE_KEY_ENCR_ENABLED
<< CRYPTO_USE_PIPE_KEY_ENCR);
/* write encr seg cfg */
pce = cmdlistinfo->encr_seg_cfg;
if ((creq->alg == CIPHER_ALG_DES) || (creq->alg == CIPHER_ALG_3DES)) {
if (creq->dir == QCE_ENCRYPT)
pce->data |= (1 << CRYPTO_ENCODE);
else
pce->data &= ~(1 << CRYPTO_ENCODE);
encr_cfg = pce->data;
} else {
encr_cfg |=
((creq->dir == QCE_ENCRYPT) ? 1 : 0) << CRYPTO_ENCODE;
}
if (use_hw_key == true)
encr_cfg |= (CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
else
encr_cfg &= ~(CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
pce->data = encr_cfg;
/* write encr seg size */
pce = cmdlistinfo->encr_seg_size;
if ((creq->mode == QCE_MODE_CCM) && (creq->dir == QCE_DECRYPT))
pce->data = (creq->cryptlen + creq->authsize);
else
pce->data = creq->cryptlen;
/* write encr seg start */
pce = cmdlistinfo->encr_seg_start;
pce->data = (coffset & 0xffff);
/* write seg size */
pce = cmdlistinfo->seg_size;
pce->data = totallen_in;
return 0;
};
static int _ce_f9_setup(struct qce_device *pce_dev, struct qce_f9_req *req,
struct qce_cmdlist_info *cmdlistinfo)
{
uint32_t ikey32[OTA_KEY_SIZE/sizeof(uint32_t)];
uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
uint32_t cfg;
struct sps_command_element *pce;
int i;
switch (req->algorithm) {
case QCE_OTA_ALGO_KASUMI:
cfg = pce_dev->reg.auth_cfg_kasumi;
break;
case QCE_OTA_ALGO_SNOW3G:
default:
cfg = pce_dev->reg.auth_cfg_snow3g;
break;
};
/* write key in CRYPTO_AUTH_IV0-3_REG */
_byte_stream_to_net_words(ikey32, &req->ikey[0], OTA_KEY_SIZE);
pce = cmdlistinfo->auth_iv;
for (i = 0; i < key_size_in_word; i++, pce++)
pce->data = ikey32[i];
/* write last bits in CRYPTO_AUTH_IV4_REG */
pce->data = req->last_bits;
/* write fresh to CRYPTO_AUTH_BYTECNT0_REG */
pce = cmdlistinfo->auth_bytecount;
pce->data = req->fresh;
/* write count-i to CRYPTO_AUTH_BYTECNT1_REG */
pce++;
pce->data = req->count_i;
/* write auth seg cfg */
pce = cmdlistinfo->auth_seg_cfg;
if (req->direction == QCE_OTA_DIR_DOWNLINK)
cfg |= BIT(CRYPTO_F9_DIRECTION);
pce->data = cfg;
/* write auth seg size */
pce = cmdlistinfo->auth_seg_size;
pce->data = req->msize;
/* write auth seg start*/
pce = cmdlistinfo->auth_seg_start;
pce->data = 0;
/* write seg size */
pce = cmdlistinfo->seg_size;
pce->data = req->msize;
/* write go */
pce = cmdlistinfo->go_proc;
pce->addr = (uint32_t)(CRYPTO_GOPROC_REG + pce_dev->phy_iobase);
return 0;
}
static int _ce_f8_setup(struct qce_device *pce_dev, struct qce_f8_req *req,
bool key_stream_mode, uint16_t npkts, uint16_t cipher_offset,
uint16_t cipher_size,
struct qce_cmdlist_info *cmdlistinfo)
{
uint32_t ckey32[OTA_KEY_SIZE/sizeof(uint32_t)];
uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
uint32_t cfg;
struct sps_command_element *pce;
int i;
switch (req->algorithm) {
case QCE_OTA_ALGO_KASUMI:
cfg = pce_dev->reg.encr_cfg_kasumi;
break;
case QCE_OTA_ALGO_SNOW3G:
default:
cfg = pce_dev->reg.encr_cfg_snow3g;
break;
};
/* write key */
_byte_stream_to_net_words(ckey32, &req->ckey[0], OTA_KEY_SIZE);
pce = cmdlistinfo->encr_key;
for (i = 0; i < key_size_in_word; i++, pce++)
pce->data = ckey32[i];
/* write encr seg cfg */
pce = cmdlistinfo->encr_seg_cfg;
if (key_stream_mode)
cfg |= BIT(CRYPTO_F8_KEYSTREAM_ENABLE);
if (req->direction == QCE_OTA_DIR_DOWNLINK)
cfg |= BIT(CRYPTO_F8_DIRECTION);
pce->data = cfg;
/* write encr seg start */
pce = cmdlistinfo->encr_seg_start;
pce->data = (cipher_offset & 0xffff);
/* write encr seg size */
pce = cmdlistinfo->encr_seg_size;
pce->data = cipher_size;
/* write seg size */
pce = cmdlistinfo->seg_size;
pce->data = req->data_len;
/* write cntr0_iv0 for countC */
pce = cmdlistinfo->encr_cntr_iv;
pce->data = req->count_c;
/* write cntr1_iv1 for nPkts, and bearer */
pce++;
if (npkts == 1)
npkts = 0;
pce->data = req->bearer << CRYPTO_CNTR1_IV1_REG_F8_BEARER |
npkts << CRYPTO_CNTR1_IV1_REG_F8_PKT_CNT;
/* write go */
pce = cmdlistinfo->go_proc;
pce->addr = (uint32_t)(CRYPTO_GOPROC_REG + pce_dev->phy_iobase);
return 0;
}
static void _qce_dump_descr_fifos(struct qce_device *pce_dev)
{
int i, j, ents;
struct sps_iovec *iovec = pce_dev->ce_sps.in_transfer.iovec;
uint32_t cmd_flags = SPS_IOVEC_FLAG_CMD;
pr_info("==============================================\n");
pr_info("CONSUMER (TX/IN/DEST) PIPE DESCRIPTOR\n");
pr_info("==============================================\n");
for (i = 0; i < pce_dev->ce_sps.in_transfer.iovec_count; i++) {
pr_info(" [%d] addr=0x%x size=0x%x flags=0x%x\n", i,
iovec->addr, iovec->size, iovec->flags);
if (iovec->flags & cmd_flags) {
struct sps_command_element *pced;
pced = (struct sps_command_element *)
(GET_VIRT_ADDR(iovec->addr));
ents = iovec->size/(sizeof(struct sps_command_element));
for (j = 0; j < ents; j++) {
pr_info(" [%d] [0x%x] 0x%x\n", j,
pced->addr, pced->data);
pced++;
}
}
iovec++;
}
pr_info("==============================================\n");
pr_info("PRODUCER (RX/OUT/SRC) PIPE DESCRIPTOR\n");
pr_info("==============================================\n");
iovec = pce_dev->ce_sps.out_transfer.iovec;
for (i = 0; i < pce_dev->ce_sps.out_transfer.iovec_count; i++) {
pr_info(" [%d] addr=0x%x size=0x%x flags=0x%x\n", i,
iovec->addr, iovec->size, iovec->flags);
iovec++;
}
}
#ifdef QCE_DEBUG
static void _qce_dump_descr_fifos_dbg(struct qce_device *pce_dev)
{
_qce_dump_descr_fifos(pce_dev);
}
#define QCE_WRITE_REG(val, addr) \
{ \
pr_info(" [0x%pK] 0x%x\n", addr, (uint32_t)val); \
writel_relaxed(val, addr); \
}
#else
static void _qce_dump_descr_fifos_dbg(struct qce_device *pce_dev)
{
}
#define QCE_WRITE_REG(val, addr) \
writel_relaxed(val, addr)
#endif
static int _ce_setup_hash_direct(struct qce_device *pce_dev,
struct qce_sha_req *sreq)
{
uint32_t auth32[SHA256_DIGEST_SIZE / sizeof(uint32_t)];
uint32_t diglen;
bool use_hw_key = false;
bool use_pipe_key = false;
int i;
uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint32_t authk_size_in_word = sreq->authklen/sizeof(uint32_t);
bool sha1 = false;
uint32_t auth_cfg = 0;
/* clear status */
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
CRYPTO_CONFIG_REG));
/*
* Ensure previous instructions (setting the CONFIG register)
* was completed before issuing starting to set other config register
* This is to ensure the configurations are done in correct endian-ness
* as set in the CONFIG registers
*/
mb();
if (sreq->alg == QCE_HASH_AES_CMAC) {
/* write seg_cfg */
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
/* write seg_cfg */
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
/* write seg_cfg */
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
/* Clear auth_ivn, auth_keyn registers */
for (i = 0; i < 16; i++) {
QCE_WRITE_REG(0, (pce_dev->iobase +
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
QCE_WRITE_REG(0, (pce_dev->iobase +
(CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t))));
}
/* write auth_bytecnt 0/1/2/3, start with 0 */
for (i = 0; i < 4; i++)
QCE_WRITE_REG(0, pce_dev->iobase +
CRYPTO_AUTH_BYTECNT0_REG +
i * sizeof(uint32_t));
if (sreq->authklen == AES128_KEY_SIZE)
auth_cfg = pce_dev->reg.auth_cfg_cmac_128;
else
auth_cfg = pce_dev->reg.auth_cfg_cmac_256;
}
if ((sreq->alg == QCE_HASH_SHA1_HMAC) ||
(sreq->alg == QCE_HASH_SHA256_HMAC) ||
(sreq->alg == QCE_HASH_AES_CMAC)) {
_byte_stream_to_net_words(mackey32, sreq->authkey,
sreq->authklen);
/* no more check for null key. use flag to check*/
if ((sreq->flags & QCRYPTO_CTX_USE_HW_KEY) ==
QCRYPTO_CTX_USE_HW_KEY) {
use_hw_key = true;
} else if ((sreq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
QCRYPTO_CTX_USE_PIPE_KEY) {
use_pipe_key = true;
} else {
/* setup key */
for (i = 0; i < authk_size_in_word; i++)
QCE_WRITE_REG(mackey32[i], (pce_dev->iobase +
(CRYPTO_AUTH_KEY0_REG +
i*sizeof(uint32_t))));
}
}
if (sreq->alg == QCE_HASH_AES_CMAC)
goto go_proc;
/* if not the last, the size has to be on the block boundary */
if (sreq->last_blk == 0 && (sreq->size % SHA256_BLOCK_SIZE))
return -EIO;
switch (sreq->alg) {
case QCE_HASH_SHA1:
auth_cfg = pce_dev->reg.auth_cfg_sha1;
diglen = SHA1_DIGEST_SIZE;
sha1 = true;
break;
case QCE_HASH_SHA1_HMAC:
auth_cfg = pce_dev->reg.auth_cfg_hmac_sha1;
diglen = SHA1_DIGEST_SIZE;
sha1 = true;
break;
case QCE_HASH_SHA256:
auth_cfg = pce_dev->reg.auth_cfg_sha256;
diglen = SHA256_DIGEST_SIZE;
break;
case QCE_HASH_SHA256_HMAC:
auth_cfg = pce_dev->reg.auth_cfg_hmac_sha256;
diglen = SHA256_DIGEST_SIZE;
break;
default:
return -EINVAL;
}
/* write 20/32 bytes, 5/8 words into auth_iv for SHA1/SHA256 */
if (sreq->first_blk) {
if (sha1) {
for (i = 0; i < 5; i++)
auth32[i] = _std_init_vector_sha1[i];
} else {
for (i = 0; i < 8; i++)
auth32[i] = _std_init_vector_sha256[i];
}
} else {
_byte_stream_to_net_words(auth32, sreq->digest, diglen);
}
/* Set auth_ivn, auth_keyn registers */
for (i = 0; i < 5; i++)
QCE_WRITE_REG(auth32[i], (pce_dev->iobase +
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
if ((sreq->alg == QCE_HASH_SHA256) ||
(sreq->alg == QCE_HASH_SHA256_HMAC)) {
for (i = 5; i < 8; i++)
QCE_WRITE_REG(auth32[i], (pce_dev->iobase +
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
}
/* write auth_bytecnt 0/1/2/3, start with 0 */
for (i = 0; i < 2; i++)
QCE_WRITE_REG(sreq->auth_data[i], pce_dev->iobase +
CRYPTO_AUTH_BYTECNT0_REG +
i * sizeof(uint32_t));
/* Set/reset last bit in CFG register */
if (sreq->last_blk)
auth_cfg |= 1 << CRYPTO_LAST;
else
auth_cfg &= ~(1 << CRYPTO_LAST);
if (sreq->first_blk)
auth_cfg |= 1 << CRYPTO_FIRST;
else
auth_cfg &= ~(1 << CRYPTO_FIRST);
if (use_hw_key)
auth_cfg |= 1 << CRYPTO_USE_HW_KEY_AUTH;
if (use_pipe_key)
auth_cfg |= 1 << CRYPTO_USE_PIPE_KEY_AUTH;
go_proc:
/* write seg_cfg */
QCE_WRITE_REG(auth_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
/* write auth seg_size */
QCE_WRITE_REG(sreq->size, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
/* write auth_seg_start */
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
/* reset encr seg_cfg */
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
/* write seg_size */
QCE_WRITE_REG(sreq->size, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
CRYPTO_CONFIG_REG));
/* issue go to crypto */
if (use_hw_key == false) {
QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
(1 << CRYPTO_CLR_CNTXT)),
pce_dev->iobase + CRYPTO_GOPROC_REG);
} else {
QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
pce_dev->iobase + CRYPTO_GOPROC_QC_KEY_REG);
}
/*
* Ensure previous instructions (setting the GO register)
* was completed before issuing a DMA transfer request
*/
mb();
return 0;
}
static int _ce_setup_aead_direct(struct qce_device *pce_dev,
struct qce_req *q_req, uint32_t totallen_in, uint32_t coffset)
{
int32_t authk_size_in_word = SHA_HMAC_KEY_SIZE/sizeof(uint32_t);
int i;
uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {0};
uint32_t a_cfg;
uint32_t enckey32[(MAX_CIPHER_KEY_SIZE*2)/sizeof(uint32_t)] = {0};
uint32_t enciv32[MAX_IV_LENGTH/sizeof(uint32_t)] = {0};
uint32_t enck_size_in_word = 0;
uint32_t enciv_in_word;
uint32_t key_size;
uint32_t ivsize = q_req->ivsize;
uint32_t encr_cfg;
/* clear status */
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
CRYPTO_CONFIG_REG));
/*
* Ensure previous instructions (setting the CONFIG register)
* was completed before issuing starting to set other config register
* This is to ensure the configurations are done in correct endian-ness
* as set in the CONFIG registers
*/
mb();
key_size = q_req->encklen;
enck_size_in_word = key_size/sizeof(uint32_t);
switch (q_req->alg) {
case CIPHER_ALG_DES:
switch (q_req->mode) {
case QCE_MODE_CBC:
encr_cfg = pce_dev->reg.encr_cfg_des_cbc;
break;
default:
return -EINVAL;
}
enciv_in_word = 2;
break;
case CIPHER_ALG_3DES:
switch (q_req->mode) {
case QCE_MODE_CBC:
encr_cfg = pce_dev->reg.encr_cfg_3des_cbc;
break;
default:
return -EINVAL;
}
enciv_in_word = 2;
break;
case CIPHER_ALG_AES:
switch (q_req->mode) {
case QCE_MODE_CBC:
if (key_size == AES128_KEY_SIZE)
encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128;
else if (key_size == AES256_KEY_SIZE)
encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256;
else
return -EINVAL;
break;
default:
return -EINVAL;
}
enciv_in_word = 4;
break;
default:
return -EINVAL;
}
pce_dev->mode = q_req->mode;
/* write CNTR0_IV0_REG */
if (q_req->mode != QCE_MODE_ECB) {
_byte_stream_to_net_words(enciv32, q_req->iv, ivsize);
for (i = 0; i < enciv_in_word; i++)
QCE_WRITE_REG(enciv32[i], pce_dev->iobase +
(CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)));
}
/*
* write encr key
* do not use hw key or pipe key
*/
_byte_stream_to_net_words(enckey32, q_req->enckey, key_size);
for (i = 0; i < enck_size_in_word; i++)
QCE_WRITE_REG(enckey32[i], pce_dev->iobase +
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)));
/* write encr seg cfg */
if (q_req->dir == QCE_ENCRYPT)
encr_cfg |= (1 << CRYPTO_ENCODE);
QCE_WRITE_REG(encr_cfg, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
/* we only support sha1-hmac and sha256-hmac at this point */
_byte_stream_to_net_words(mackey32, q_req->authkey,
q_req->authklen);
for (i = 0; i < authk_size_in_word; i++)
QCE_WRITE_REG(mackey32[i], pce_dev->iobase +
(CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)));
if (q_req->auth_alg == QCE_HASH_SHA1_HMAC) {
for (i = 0; i < 5; i++)
QCE_WRITE_REG(_std_init_vector_sha1[i],
pce_dev->iobase +
(CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)));
} else {
for (i = 0; i < 8; i++)
QCE_WRITE_REG(_std_init_vector_sha256[i],
pce_dev->iobase +
(CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)));
}
/* write auth_bytecnt 0/1, start with 0 */
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_BYTECNT0_REG);
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_BYTECNT1_REG);
/* write encr seg size */
QCE_WRITE_REG(q_req->cryptlen, pce_dev->iobase +
CRYPTO_ENCR_SEG_SIZE_REG);
/* write encr start */
QCE_WRITE_REG(coffset & 0xffff, pce_dev->iobase +
CRYPTO_ENCR_SEG_START_REG);
if (q_req->auth_alg == QCE_HASH_SHA1_HMAC)
a_cfg = pce_dev->reg.auth_cfg_aead_sha1_hmac;
else
a_cfg = pce_dev->reg.auth_cfg_aead_sha256_hmac;
if (q_req->dir == QCE_ENCRYPT)
a_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
else
a_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
/* write auth seg_cfg */
QCE_WRITE_REG(a_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
/* write auth seg_size */
QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
/* write auth_seg_start */
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
/* write seg_size */
QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
CRYPTO_CONFIG_REG));
/* issue go to crypto */
QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
(1 << CRYPTO_CLR_CNTXT)),
pce_dev->iobase + CRYPTO_GOPROC_REG);
/*
* Ensure previous instructions (setting the GO register)
* was completed before issuing a DMA transfer request
*/
mb();
return 0;
};
static int _ce_setup_cipher_direct(struct qce_device *pce_dev,
struct qce_req *creq, uint32_t totallen_in, uint32_t coffset)
{
uint32_t enckey32[(MAX_CIPHER_KEY_SIZE * 2)/sizeof(uint32_t)] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint32_t enciv32[MAX_IV_LENGTH / sizeof(uint32_t)] = {
0, 0, 0, 0};
uint32_t enck_size_in_word = 0;
uint32_t key_size;
bool use_hw_key = false;
bool use_pipe_key = false;
uint32_t encr_cfg = 0;
uint32_t ivsize = creq->ivsize;
int i;
/* clear status */
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
CRYPTO_CONFIG_REG));
/*
* Ensure previous instructions (setting the CONFIG register)
* was completed before issuing starting to set other config register
* This is to ensure the configurations are done in correct endian-ness
* as set in the CONFIG registers
*/
mb();
if (creq->mode == QCE_MODE_XTS)
key_size = creq->encklen/2;
else
key_size = creq->encklen;
if ((creq->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) {
use_hw_key = true;
} else {
if ((creq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
QCRYPTO_CTX_USE_PIPE_KEY)
use_pipe_key = true;
}
if ((use_pipe_key == false) && (use_hw_key == false)) {
_byte_stream_to_net_words(enckey32, creq->enckey, key_size);
enck_size_in_word = key_size/sizeof(uint32_t);
}
if ((creq->op == QCE_REQ_AEAD) && (creq->mode == QCE_MODE_CCM)) {
uint32_t authklen32 = creq->encklen/sizeof(uint32_t);
uint32_t noncelen32 = MAX_NONCE/sizeof(uint32_t);
uint32_t nonce32[MAX_NONCE/sizeof(uint32_t)] = {0, 0, 0, 0};
uint32_t auth_cfg = 0;
/* Clear auth_ivn, auth_keyn registers */
for (i = 0; i < 16; i++) {
QCE_WRITE_REG(0, (pce_dev->iobase +
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
QCE_WRITE_REG(0, (pce_dev->iobase +
(CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t))));
}
/* write auth_bytecnt 0/1/2/3, start with 0 */
for (i = 0; i < 4; i++)
QCE_WRITE_REG(0, pce_dev->iobase +
CRYPTO_AUTH_BYTECNT0_REG +
i * sizeof(uint32_t));
/* write nonce */
_byte_stream_to_net_words(nonce32, creq->nonce, MAX_NONCE);
for (i = 0; i < noncelen32; i++)
QCE_WRITE_REG(nonce32[i], pce_dev->iobase +
CRYPTO_AUTH_INFO_NONCE0_REG +
(i*sizeof(uint32_t)));
if (creq->authklen == AES128_KEY_SIZE)
auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_128;
else {
if (creq->authklen == AES256_KEY_SIZE)
auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_256;
}
if (creq->dir == QCE_ENCRYPT)
auth_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
else
auth_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
auth_cfg |= ((creq->authsize - 1) << CRYPTO_AUTH_SIZE);
if (use_hw_key == true) {
auth_cfg |= (1 << CRYPTO_USE_HW_KEY_AUTH);
} else {
auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
/* write auth key */
for (i = 0; i < authklen32; i++)
QCE_WRITE_REG(enckey32[i], pce_dev->iobase +
CRYPTO_AUTH_KEY0_REG + (i*sizeof(uint32_t)));
}
QCE_WRITE_REG(auth_cfg, pce_dev->iobase +
CRYPTO_AUTH_SEG_CFG_REG);
if (creq->dir == QCE_ENCRYPT) {
QCE_WRITE_REG(totallen_in, pce_dev->iobase +
CRYPTO_AUTH_SEG_SIZE_REG);
} else {
QCE_WRITE_REG((totallen_in - creq->authsize),
pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
}
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
} else {
if (creq->op != QCE_REQ_AEAD)
QCE_WRITE_REG(0, pce_dev->iobase +
CRYPTO_AUTH_SEG_CFG_REG);
}
/*
* Ensure previous instructions (write to all AUTH registers)
* was completed before accessing a register that is not in
* in the same 1K range.
*/
mb();
switch (creq->mode) {
case QCE_MODE_ECB:
if (key_size == AES128_KEY_SIZE)
encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_128;
else
encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_256;
break;
case QCE_MODE_CBC:
if (key_size == AES128_KEY_SIZE)
encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128;
else
encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256;
break;
case QCE_MODE_XTS:
if (key_size == AES128_KEY_SIZE)
encr_cfg = pce_dev->reg.encr_cfg_aes_xts_128;
else
encr_cfg = pce_dev->reg.encr_cfg_aes_xts_256;
break;
case QCE_MODE_CCM:
if (key_size == AES128_KEY_SIZE)
encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_128;
else
encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_256;
break;
case QCE_MODE_CTR:
default:
if (key_size == AES128_KEY_SIZE)
encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_128;
else
encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_256;
break;
}
pce_dev->mode = creq->mode;
switch (creq->alg) {
case CIPHER_ALG_DES:
if (creq->mode != QCE_MODE_ECB) {
encr_cfg = pce_dev->reg.encr_cfg_des_cbc;
_byte_stream_to_net_words(enciv32, creq->iv, ivsize);
QCE_WRITE_REG(enciv32[0], pce_dev->iobase +
CRYPTO_CNTR0_IV0_REG);
QCE_WRITE_REG(enciv32[1], pce_dev->iobase +
CRYPTO_CNTR1_IV1_REG);
} else {
encr_cfg = pce_dev->reg.encr_cfg_des_ecb;
}
if (use_hw_key == false) {
QCE_WRITE_REG(enckey32[0], pce_dev->iobase +
CRYPTO_ENCR_KEY0_REG);
QCE_WRITE_REG(enckey32[1], pce_dev->iobase +
CRYPTO_ENCR_KEY1_REG);
}
break;
case CIPHER_ALG_3DES:
if (creq->mode != QCE_MODE_ECB) {
_byte_stream_to_net_words(enciv32, creq->iv, ivsize);
QCE_WRITE_REG(enciv32[0], pce_dev->iobase +
CRYPTO_CNTR0_IV0_REG);
QCE_WRITE_REG(enciv32[1], pce_dev->iobase +
CRYPTO_CNTR1_IV1_REG);
encr_cfg = pce_dev->reg.encr_cfg_3des_cbc;
} else {
encr_cfg = pce_dev->reg.encr_cfg_3des_ecb;
}
if (use_hw_key == false) {
/* write encr key */
for (i = 0; i < 6; i++)
QCE_WRITE_REG(enckey32[0], (pce_dev->iobase +
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t))));
}
break;
case CIPHER_ALG_AES:
default:
if (creq->mode == QCE_MODE_XTS) {
uint32_t xtskey32[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)]
= {0, 0, 0, 0, 0, 0, 0, 0};
uint32_t xtsklen =
creq->encklen/(2 * sizeof(uint32_t));
if ((use_hw_key == false) && (use_pipe_key == false)) {
_byte_stream_to_net_words(xtskey32,
(creq->enckey + creq->encklen/2),
creq->encklen/2);
/* write xts encr key */
for (i = 0; i < xtsklen; i++)
QCE_WRITE_REG(xtskey32[i],
pce_dev->iobase +
CRYPTO_ENCR_XTS_KEY0_REG +
(i * sizeof(uint32_t)));
}
/* write xts du size */
switch (creq->flags & QCRYPTO_CTX_XTS_MASK) {
case QCRYPTO_CTX_XTS_DU_SIZE_512B:
QCE_WRITE_REG(
min((uint32_t)QCE_SECTOR_SIZE,
creq->cryptlen), pce_dev->iobase +
CRYPTO_ENCR_XTS_DU_SIZE_REG);
break;
case QCRYPTO_CTX_XTS_DU_SIZE_1KB:
QCE_WRITE_REG(
min((uint32_t)(QCE_SECTOR_SIZE * 2),
creq->cryptlen), pce_dev->iobase +
CRYPTO_ENCR_XTS_DU_SIZE_REG);
break;
default:
QCE_WRITE_REG(creq->cryptlen,
pce_dev->iobase +
CRYPTO_ENCR_XTS_DU_SIZE_REG);
break;
}
}
if (creq->mode != QCE_MODE_ECB) {
if (creq->mode == QCE_MODE_XTS)
_byte_stream_swap_to_net_words(enciv32,
creq->iv, ivsize);
else
_byte_stream_to_net_words(enciv32, creq->iv,
ivsize);
/* write encr cntr iv */
for (i = 0; i <= 3; i++)
QCE_WRITE_REG(enciv32[i], pce_dev->iobase +
CRYPTO_CNTR0_IV0_REG +
(i * sizeof(uint32_t)));
if (creq->mode == QCE_MODE_CCM) {
/* write cntr iv for ccm */
for (i = 0; i <= 3; i++)
QCE_WRITE_REG(enciv32[i],
pce_dev->iobase +
CRYPTO_ENCR_CCM_INT_CNTR0_REG +
(i * sizeof(uint32_t)));
/* update cntr_iv[3] by one */
QCE_WRITE_REG((enciv32[3] + 1),
pce_dev->iobase +
CRYPTO_CNTR0_IV0_REG +
(3 * sizeof(uint32_t)));
}
}
if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) {
encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 <<
CRYPTO_ENCR_KEY_SZ);
} else {
if ((use_hw_key == false) && (use_pipe_key == false)) {
for (i = 0; i < enck_size_in_word; i++)
QCE_WRITE_REG(enckey32[i],
pce_dev->iobase +
CRYPTO_ENCR_KEY0_REG +
(i * sizeof(uint32_t)));
}
} /* else of if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) */
break;
} /* end of switch (creq->mode) */
if (use_pipe_key)
encr_cfg |= (CRYPTO_USE_PIPE_KEY_ENCR_ENABLED
<< CRYPTO_USE_PIPE_KEY_ENCR);
/* write encr seg cfg */
encr_cfg |= ((creq->dir == QCE_ENCRYPT) ? 1 : 0) << CRYPTO_ENCODE;
if (use_hw_key == true)
encr_cfg |= (CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
else
encr_cfg &= ~(CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
/* write encr seg cfg */
QCE_WRITE_REG(encr_cfg, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
/* write encr seg size */
if ((creq->mode == QCE_MODE_CCM) && (creq->dir == QCE_DECRYPT)) {
QCE_WRITE_REG((creq->cryptlen + creq->authsize),
pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
} else {
QCE_WRITE_REG(creq->cryptlen,
pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
}
/* write encr seg start */
QCE_WRITE_REG((coffset & 0xffff),
pce_dev->iobase + CRYPTO_ENCR_SEG_START_REG);
/* write encr counter mask */
QCE_WRITE_REG(0xffffffff,
pce_dev->iobase + CRYPTO_CNTR_MASK_REG);
QCE_WRITE_REG(0xffffffff,
pce_dev->iobase + CRYPTO_CNTR_MASK_REG0);
QCE_WRITE_REG(0xffffffff,
pce_dev->iobase + CRYPTO_CNTR_MASK_REG1);
QCE_WRITE_REG(0xffffffff,
pce_dev->iobase + CRYPTO_CNTR_MASK_REG2);
/* write seg size */
QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
CRYPTO_CONFIG_REG));
/* issue go to crypto */
if (use_hw_key == false) {
QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
(1 << CRYPTO_CLR_CNTXT)),
pce_dev->iobase + CRYPTO_GOPROC_REG);
} else {
QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
pce_dev->iobase + CRYPTO_GOPROC_QC_KEY_REG);
}
/*
* Ensure previous instructions (setting the GO register)
* was completed before issuing a DMA transfer request
*/
mb();
return 0;
};
static int _ce_f9_setup_direct(struct qce_device *pce_dev,
struct qce_f9_req *req)
{
uint32_t ikey32[OTA_KEY_SIZE/sizeof(uint32_t)];
uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
uint32_t auth_cfg;
int i;
switch (req->algorithm) {
case QCE_OTA_ALGO_KASUMI:
auth_cfg = pce_dev->reg.auth_cfg_kasumi;
break;
case QCE_OTA_ALGO_SNOW3G:
default:
auth_cfg = pce_dev->reg.auth_cfg_snow3g;
break;
};
/* clear status */
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
/* set big endian configuration */
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
CRYPTO_CONFIG_REG));
/*
* Ensure previous instructions (setting the CONFIG register)
* was completed before issuing starting to set other config register
* This is to ensure the configurations are done in correct endian-ness
* as set in the CONFIG registers
*/
mb();
/* write enc_seg_cfg */
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
/* write ecn_seg_size */
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
/* write key in CRYPTO_AUTH_IV0-3_REG */
_byte_stream_to_net_words(ikey32, &req->ikey[0], OTA_KEY_SIZE);
for (i = 0; i < key_size_in_word; i++)
QCE_WRITE_REG(ikey32[i], (pce_dev->iobase +
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
/* write last bits in CRYPTO_AUTH_IV4_REG */
QCE_WRITE_REG(req->last_bits, (pce_dev->iobase +
CRYPTO_AUTH_IV4_REG));
/* write fresh to CRYPTO_AUTH_BYTECNT0_REG */
QCE_WRITE_REG(req->fresh, (pce_dev->iobase +
CRYPTO_AUTH_BYTECNT0_REG));
/* write count-i to CRYPTO_AUTH_BYTECNT1_REG */
QCE_WRITE_REG(req->count_i, (pce_dev->iobase +
CRYPTO_AUTH_BYTECNT1_REG));
/* write auth seg cfg */
if (req->direction == QCE_OTA_DIR_DOWNLINK)
auth_cfg |= BIT(CRYPTO_F9_DIRECTION);
QCE_WRITE_REG(auth_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
/* write auth seg size */
QCE_WRITE_REG(req->msize, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
/* write auth seg start*/
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
/* write seg size */
QCE_WRITE_REG(req->msize, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
/* set little endian configuration before go*/
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
CRYPTO_CONFIG_REG));
/* write go */
QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
(1 << CRYPTO_CLR_CNTXT)),
pce_dev->iobase + CRYPTO_GOPROC_REG);
/*
* Ensure previous instructions (setting the GO register)
* was completed before issuing a DMA transfer request
*/
mb();
return 0;
}
static int _ce_f8_setup_direct(struct qce_device *pce_dev,
struct qce_f8_req *req, bool key_stream_mode,
uint16_t npkts, uint16_t cipher_offset, uint16_t cipher_size)
{
int i = 0;
uint32_t encr_cfg = 0;
uint32_t ckey32[OTA_KEY_SIZE/sizeof(uint32_t)];
uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
switch (req->algorithm) {
case QCE_OTA_ALGO_KASUMI:
encr_cfg = pce_dev->reg.encr_cfg_kasumi;
break;
case QCE_OTA_ALGO_SNOW3G:
default:
encr_cfg = pce_dev->reg.encr_cfg_snow3g;
break;
};
/* clear status */
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
/* set big endian configuration */
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
CRYPTO_CONFIG_REG));
/* write auth seg configuration */
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
/* write auth seg size */
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
/* write key */
_byte_stream_to_net_words(ckey32, &req->ckey[0], OTA_KEY_SIZE);
for (i = 0; i < key_size_in_word; i++)
QCE_WRITE_REG(ckey32[i], (pce_dev->iobase +
(CRYPTO_ENCR_KEY0_REG + i*sizeof(uint32_t))));
/* write encr seg cfg */
if (key_stream_mode)
encr_cfg |= BIT(CRYPTO_F8_KEYSTREAM_ENABLE);
if (req->direction == QCE_OTA_DIR_DOWNLINK)
encr_cfg |= BIT(CRYPTO_F8_DIRECTION);
QCE_WRITE_REG(encr_cfg, pce_dev->iobase +
CRYPTO_ENCR_SEG_CFG_REG);
/* write encr seg start */
QCE_WRITE_REG((cipher_offset & 0xffff), pce_dev->iobase +
CRYPTO_ENCR_SEG_START_REG);
/* write encr seg size */
QCE_WRITE_REG(cipher_size, pce_dev->iobase +
CRYPTO_ENCR_SEG_SIZE_REG);
/* write seg size */
QCE_WRITE_REG(req->data_len, pce_dev->iobase +
CRYPTO_SEG_SIZE_REG);
/* write cntr0_iv0 for countC */
QCE_WRITE_REG(req->count_c, pce_dev->iobase +
CRYPTO_CNTR0_IV0_REG);
/* write cntr1_iv1 for nPkts, and bearer */
if (npkts == 1)
npkts = 0;
QCE_WRITE_REG(req->bearer << CRYPTO_CNTR1_IV1_REG_F8_BEARER |
npkts << CRYPTO_CNTR1_IV1_REG_F8_PKT_CNT,
pce_dev->iobase + CRYPTO_CNTR1_IV1_REG);
/* set little endian configuration before go*/
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
CRYPTO_CONFIG_REG));
/* write go */
QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
(1 << CRYPTO_CLR_CNTXT)),
pce_dev->iobase + CRYPTO_GOPROC_REG);
/*
* Ensure previous instructions (setting the GO register)
* was completed before issuing a DMA transfer request
*/
mb();
return 0;
}
static int _qce_unlock_other_pipes(struct qce_device *pce_dev)
{
int rc = 0;
if (pce_dev->no_get_around || pce_dev->support_cmd_dscr == false)
return rc;
pce_dev->ce_sps.consumer.event.callback = NULL;
rc = sps_transfer_one(pce_dev->ce_sps.consumer.pipe,
GET_PHYS_ADDR(pce_dev->
ce_sps.cmdlistptr.unlock_all_pipes.cmdlist),
0, NULL, (SPS_IOVEC_FLAG_CMD | SPS_IOVEC_FLAG_UNLOCK));
if (rc) {
pr_err("sps_xfr_one() fail rc=%d", rc);
rc = -EINVAL;
}
return rc;
}
static int _aead_complete(struct qce_device *pce_dev)
{
struct aead_request *areq;
unsigned char mac[SHA256_DIGEST_SIZE];
uint32_t status;
uint32_t result_dump_status;
int32_t result_status;
areq = (struct aead_request *) pce_dev->areq;
if (areq->src != areq->dst) {
qce_dma_unmap_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents,
DMA_FROM_DEVICE);
}
qce_dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
DMA_TO_DEVICE);
qce_dma_unmap_sg(pce_dev->pdev, areq->assoc, pce_dev->assoc_nents,
DMA_TO_DEVICE);
/* check MAC */
memcpy(mac, (char *)(&pce_dev->ce_sps.result->auth_iv[0]),
SHA256_DIGEST_SIZE);
/* read status before unlock */
status = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS_REG);
if (_qce_unlock_other_pipes(pce_dev)) {
pce_dev->qce_cb(areq, mac, NULL, -ENXIO);
return -ENXIO;
}
result_status = 0;
result_dump_status = be32_to_cpu(pce_dev->ce_sps.result->status);
pce_dev->ce_sps.result->status = 0;
if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
| (1 << CRYPTO_HSD_ERR))) {
pr_err("aead operation error. Status %x\n", result_dump_status);
result_status = -ENXIO;
} else if (pce_dev->ce_sps.consumer_status |
pce_dev->ce_sps.producer_status) {
pr_err("aead sps operation error. sps status %x %x\n",
pce_dev->ce_sps.consumer_status,
pce_dev->ce_sps.producer_status);
result_status = -ENXIO;
}
if (pce_dev->mode == QCE_MODE_CCM) {
/*
* Not from result dump, instead, use the status we just
* read of device for MAC_FAILED.
*/
if (result_status == 0 && (status & (1 << CRYPTO_MAC_FAILED)))
result_status = -EBADMSG;
pce_dev->qce_cb(areq, mac, NULL, result_status);
} else {
uint32_t ivsize = 0;
struct crypto_aead *aead;
unsigned char iv[NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE];
aead = crypto_aead_reqtfm(areq);
ivsize = crypto_aead_ivsize(aead);
if (pce_dev->ce_sps.minor_version != 0)
dma_unmap_single(pce_dev->pdev, pce_dev->phy_iv_in,
ivsize, DMA_TO_DEVICE);
memcpy(iv, (char *)(pce_dev->ce_sps.result->encr_cntr_iv),
sizeof(iv));
pce_dev->qce_cb(areq, mac, iv, result_status);
}
return 0;
};
static int _sha_complete(struct qce_device *pce_dev)
{
struct ahash_request *areq;
unsigned char digest[SHA256_DIGEST_SIZE];
uint32_t bytecount32[2];
int32_t result_status;
uint32_t result_dump_status;
areq = (struct ahash_request *) pce_dev->areq;
if (!areq) {
pr_err("sha operation error. areq is NULL\n");
return -ENXIO;
}
qce_dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
DMA_TO_DEVICE);
memcpy(digest, (char *)(&pce_dev->ce_sps.result->auth_iv[0]),
SHA256_DIGEST_SIZE);
_byte_stream_to_net_words(bytecount32,
(unsigned char *)pce_dev->ce_sps.result->auth_byte_count,
2 * CRYPTO_REG_SIZE);
if (_qce_unlock_other_pipes(pce_dev)) {
pce_dev->qce_cb(areq, digest, (char *)bytecount32,
-ENXIO);
return -ENXIO;
}
result_status = 0;
result_dump_status = be32_to_cpu(pce_dev->ce_sps.result->status);
pce_dev->ce_sps.result->status = 0;
if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
| (1 << CRYPTO_HSD_ERR))) {
pr_err("sha operation error. Status %x\n", result_dump_status);
result_status = -ENXIO;
} else if (pce_dev->ce_sps.consumer_status) {
pr_err("sha sps operation error. sps status %x\n",
pce_dev->ce_sps.consumer_status);
result_status = -ENXIO;
}
pce_dev->qce_cb(areq, digest, (char *)bytecount32,
result_status);
return 0;
};
static int _f9_complete(struct qce_device *pce_dev)
{
uint32_t mac_i;
int32_t result_status;
uint32_t result_dump_status;
dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_src,
pce_dev->ota_size, DMA_TO_DEVICE);
_byte_stream_to_net_words(&mac_i,
(char *)(&pce_dev->ce_sps.result->auth_iv[0]),
CRYPTO_REG_SIZE);
if (_qce_unlock_other_pipes(pce_dev)) {
pce_dev->qce_cb(pce_dev->areq, NULL, NULL, -ENXIO);
return -ENXIO;
}
result_status = 0;
result_dump_status = be32_to_cpu(pce_dev->ce_sps.result->status);
pce_dev->ce_sps.result->status = 0;
if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
| (1 << CRYPTO_HSD_ERR))) {
pr_err("f9 operation error. Status %x\n", result_dump_status);
result_status = -ENXIO;
} else if (pce_dev->ce_sps.consumer_status |
pce_dev->ce_sps.producer_status) {
pr_err("f9 sps operation error. sps status %x %x\n",
pce_dev->ce_sps.consumer_status,
pce_dev->ce_sps.producer_status);
result_status = -ENXIO;
}
pce_dev->qce_cb(pce_dev->areq, (char *)&mac_i, NULL, result_status);
return 0;
}
static int _ablk_cipher_complete(struct qce_device *pce_dev)
{
struct ablkcipher_request *areq;
unsigned char iv[NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE];
int32_t result_status;
uint32_t result_dump_status;
areq = (struct ablkcipher_request *) pce_dev->areq;
if (areq->src != areq->dst) {
qce_dma_unmap_sg(pce_dev->pdev, areq->dst,
pce_dev->dst_nents, DMA_FROM_DEVICE);
}
qce_dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
DMA_TO_DEVICE);
if (_qce_unlock_other_pipes(pce_dev)) {
pce_dev->qce_cb(areq, NULL, NULL, -ENXIO);
return -ENXIO;
}
result_status = 0;
result_dump_status = be32_to_cpu(pce_dev->ce_sps.result->status);
pce_dev->ce_sps.result->status = 0;
if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
| (1 << CRYPTO_HSD_ERR))) {
pr_err("ablk_cipher operation error. Status %x\n",
result_dump_status);
result_status = -ENXIO;
} else if (pce_dev->ce_sps.consumer_status |
pce_dev->ce_sps.producer_status) {
pr_err("ablk_cipher sps operation error. sps status %x %x\n",
pce_dev->ce_sps.consumer_status,
pce_dev->ce_sps.producer_status);
result_status = -ENXIO;
}
if (pce_dev->mode == QCE_MODE_ECB) {
pce_dev->qce_cb(areq, NULL, NULL,
pce_dev->ce_sps.consumer_status |
result_status);
} else {
if (pce_dev->ce_sps.minor_version == 0) {
if (pce_dev->mode == QCE_MODE_CBC) {
if (pce_dev->dir == QCE_DECRYPT)
memcpy(iv, (char *)pce_dev->dec_iv,
sizeof(iv));
else
memcpy(iv, (unsigned char *)
(sg_virt(areq->src) +
areq->src->length - 16),
sizeof(iv));
}
if ((pce_dev->mode == QCE_MODE_CTR) ||
(pce_dev->mode == QCE_MODE_XTS)) {
uint32_t num_blk = 0;
uint32_t cntr_iv3 = 0;
unsigned long long cntr_iv64 = 0;
unsigned char *b = (unsigned char *)(&cntr_iv3);
memcpy(iv, areq->info, sizeof(iv));
if (pce_dev->mode != QCE_MODE_XTS)
num_blk = areq->nbytes/16;
else
num_blk = 1;
cntr_iv3 = ((*(iv + 12) << 24) & 0xff000000) |
(((*(iv + 13)) << 16) & 0xff0000) |
(((*(iv + 14)) << 8) & 0xff00) |
(*(iv + 15) & 0xff);
cntr_iv64 =
(((unsigned long long)cntr_iv3 &
(unsigned long long)0xFFFFFFFFULL) +
(unsigned long long)num_blk) %
(unsigned long long)(0x100000000ULL);
cntr_iv3 = (u32)(cntr_iv64 & 0xFFFFFFFF);
*(iv + 15) = (char)(*b);
*(iv + 14) = (char)(*(b + 1));
*(iv + 13) = (char)(*(b + 2));
*(iv + 12) = (char)(*(b + 3));
}
} else {
memcpy(iv,
(char *)(pce_dev->ce_sps.result->encr_cntr_iv),
sizeof(iv));
}
pce_dev->qce_cb(areq, NULL, iv, result_status);
}
return 0;
};
static int _f8_complete(struct qce_device *pce_dev)
{
int32_t result_status;
uint32_t result_dump_status;
if (pce_dev->phy_ota_dst != 0)
dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_dst,
pce_dev->ota_size, DMA_FROM_DEVICE);
if (pce_dev->phy_ota_src != 0)
dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_src,
pce_dev->ota_size, (pce_dev->phy_ota_dst) ?
DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
if (_qce_unlock_other_pipes(pce_dev)) {
pce_dev->qce_cb(pce_dev->areq, NULL, NULL, -ENXIO);
return -ENXIO;
}
result_status = 0;
result_dump_status = be32_to_cpu(pce_dev->ce_sps.result->status);
pce_dev->ce_sps.result->status = 0;
if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
| (1 << CRYPTO_HSD_ERR))) {
pr_err("f8 operation error. Status %x\n", result_dump_status);
result_status = -ENXIO;
} else if (pce_dev->ce_sps.consumer_status |
pce_dev->ce_sps.producer_status) {
pr_err("f8 sps operation error. sps status %x %x\n",
pce_dev->ce_sps.consumer_status,
pce_dev->ce_sps.producer_status);
result_status = -ENXIO;
}
pce_dev->qce_cb(pce_dev->areq, NULL, NULL, result_status);
return 0;
}
static void _qce_sps_iovec_count_init(struct qce_device *pce_dev)
{
pce_dev->ce_sps.in_transfer.iovec_count = 0;
pce_dev->ce_sps.out_transfer.iovec_count = 0;
}
static void _qce_set_flag(struct sps_transfer *sps_bam_pipe, uint32_t flag)
{
struct sps_iovec *iovec;
if (sps_bam_pipe->iovec_count == 0)
return;
iovec = sps_bam_pipe->iovec + (sps_bam_pipe->iovec_count - 1);
iovec->flags |= flag;
}
static int _qce_sps_add_data(dma_addr_t paddr, uint32_t len,
struct sps_transfer *sps_bam_pipe)
{
struct sps_iovec *iovec = sps_bam_pipe->iovec +
sps_bam_pipe->iovec_count;
uint32_t data_cnt;
while (len > 0) {
if (sps_bam_pipe->iovec_count == QCE_MAX_NUM_DSCR) {
pr_err("Num of descrptor %d exceed max (%d)",
sps_bam_pipe->iovec_count,
(uint32_t)QCE_MAX_NUM_DSCR);
return -ENOMEM;
}
if (len > SPS_MAX_PKT_SIZE)
data_cnt = SPS_MAX_PKT_SIZE;
else
data_cnt = len;
iovec->size = data_cnt;
iovec->addr = SPS_GET_LOWER_ADDR(paddr);
iovec->flags = SPS_GET_UPPER_ADDR(paddr);
sps_bam_pipe->iovec_count++;
iovec++;
paddr += data_cnt;
len -= data_cnt;
}
return 0;
}
static int _qce_sps_add_sg_data(struct qce_device *pce_dev,
struct scatterlist *sg_src, uint32_t nbytes,
struct sps_transfer *sps_bam_pipe)
{
uint32_t data_cnt, len;
dma_addr_t addr;
struct sps_iovec *iovec = sps_bam_pipe->iovec +
sps_bam_pipe->iovec_count;
while ((nbytes > 0) && sg_src) {
len = min(nbytes, sg_dma_len(sg_src));
nbytes -= len;
addr = sg_dma_address(sg_src);
if (pce_dev->ce_sps.minor_version == 0)
len = ALIGN(len, pce_dev->ce_sps.ce_burst_size);
while (len > 0) {
if (sps_bam_pipe->iovec_count == QCE_MAX_NUM_DSCR) {
pr_err("Num of descrptor %d exceed max (%d)",
sps_bam_pipe->iovec_count,
(uint32_t)QCE_MAX_NUM_DSCR);
return -ENOMEM;
}
if (len > SPS_MAX_PKT_SIZE) {
data_cnt = SPS_MAX_PKT_SIZE;
iovec->size = data_cnt;
iovec->addr = SPS_GET_LOWER_ADDR(addr);
iovec->flags = SPS_GET_UPPER_ADDR(addr);
} else {
data_cnt = len;
iovec->size = data_cnt;
iovec->addr = SPS_GET_LOWER_ADDR(addr);
iovec->flags = SPS_GET_UPPER_ADDR(addr);
}
iovec++;
sps_bam_pipe->iovec_count++;
addr += data_cnt;
len -= data_cnt;
}
sg_src = scatterwalk_sg_next(sg_src);
}
return 0;
}
static int _qce_sps_add_cmd(struct qce_device *pce_dev, uint32_t flag,
struct qce_cmdlist_info *cmdptr,
struct sps_transfer *sps_bam_pipe)
{
dma_addr_t paddr = GET_PHYS_ADDR(cmdptr->cmdlist);
struct sps_iovec *iovec = sps_bam_pipe->iovec +
sps_bam_pipe->iovec_count;
iovec->size = cmdptr->size;
iovec->addr = SPS_GET_LOWER_ADDR(paddr);
iovec->flags = SPS_GET_UPPER_ADDR(paddr) | SPS_IOVEC_FLAG_CMD | flag;
sps_bam_pipe->iovec_count++;
return 0;
}
static int _qce_sps_transfer(struct qce_device *pce_dev)
{
int rc = 0;
_qce_dump_descr_fifos_dbg(pce_dev);
if (pce_dev->ce_sps.in_transfer.iovec_count) {
rc = sps_transfer(pce_dev->ce_sps.consumer.pipe,
&pce_dev->ce_sps.in_transfer);
if (rc) {
pr_err("sps_xfr() fail (consumer pipe=0x%lx) rc = %d\n",
(uintptr_t)pce_dev->ce_sps.consumer.pipe, rc);
_qce_dump_descr_fifos(pce_dev);
return rc;
}
}
rc = sps_transfer(pce_dev->ce_sps.producer.pipe,
&pce_dev->ce_sps.out_transfer);
if (rc) {
pr_err("sps_xfr() fail (producer pipe=0x%lx) rc = %d\n",
(uintptr_t)pce_dev->ce_sps.producer.pipe, rc);
return rc;
}
return rc;
}
/**
* Allocate and Connect a CE peripheral's SPS endpoint
*
* This function allocates endpoint context and
* connect it with memory endpoint by calling
* appropriate SPS driver APIs.
*
* Also registers a SPS callback function with
* SPS driver
*
* This function should only be called once typically
* during driver probe.
*
* @pce_dev - Pointer to qce_device structure
* @ep - Pointer to sps endpoint data structure
* @is_produce - 1 means Producer endpoint
* 0 means Consumer endpoint
*
* @return - 0 if successful else negative value.
*
*/
static int qce_sps_init_ep_conn(struct qce_device *pce_dev,
struct qce_sps_ep_conn_data *ep,
bool is_producer)
{
int rc = 0;
struct sps_pipe *sps_pipe_info;
struct sps_connect *sps_connect_info = &ep->connect;
struct sps_register_event *sps_event = &ep->event;
/* Allocate endpoint context */
sps_pipe_info = sps_alloc_endpoint();
if (!sps_pipe_info) {
pr_err("sps_alloc_endpoint() failed!!! is_producer=%d",
is_producer);
rc = -ENOMEM;
goto out;
}
/* Now save the sps pipe handle */
ep->pipe = sps_pipe_info;
/* Get default connection configuration for an endpoint */
rc = sps_get_config(sps_pipe_info, sps_connect_info);
if (rc) {
pr_err("sps_get_config() fail pipe_handle=0x%lx, rc = %d\n",
(uintptr_t)sps_pipe_info, rc);
goto get_config_err;
}
/* Modify the default connection configuration */
if (is_producer) {
/*
* For CE producer transfer, source should be
* CE peripheral where as destination should
* be system memory.
*/
sps_connect_info->source = pce_dev->ce_sps.bam_handle;
sps_connect_info->destination = SPS_DEV_HANDLE_MEM;
/* Producer pipe will handle this connection */
sps_connect_info->mode = SPS_MODE_SRC;
sps_connect_info->options =
SPS_O_AUTO_ENABLE | SPS_O_DESC_DONE;
} else {
/* For CE consumer transfer, source should be
* system memory where as destination should
* CE peripheral
*/
sps_connect_info->source = SPS_DEV_HANDLE_MEM;
sps_connect_info->destination = pce_dev->ce_sps.bam_handle;
sps_connect_info->mode = SPS_MODE_DEST;
sps_connect_info->options =
SPS_O_AUTO_ENABLE | SPS_O_EOT;
}
/* Producer pipe index */
sps_connect_info->src_pipe_index = pce_dev->ce_sps.src_pipe_index;
/* Consumer pipe index */
sps_connect_info->dest_pipe_index = pce_dev->ce_sps.dest_pipe_index;
/* Set pipe group */
sps_connect_info->lock_group = pce_dev->ce_sps.pipe_pair_index;
sps_connect_info->event_thresh = 0x10;
/*
* Max. no of scatter/gather buffers that can
* be passed by block layer = 32 (NR_SG).
* Each BAM descritor needs 64 bits (8 bytes).
* One BAM descriptor is required per buffer transfer.
* So we would require total 256 (32 * 8) bytes of descriptor FIFO.
* But due to HW limitation we need to allocate atleast one extra
* descriptor memory (256 bytes + 8 bytes). But in order to be
* in power of 2, we are allocating 512 bytes of memory.
*/
sps_connect_info->desc.size = QCE_MAX_NUM_DSCR *
sizeof(struct sps_iovec);
sps_connect_info->desc.base = dma_alloc_coherent(pce_dev->pdev,
sps_connect_info->desc.size,
&sps_connect_info->desc.phys_base,
GFP_KERNEL);
if (sps_connect_info->desc.base == NULL) {
rc = -ENOMEM;
pr_err("Can not allocate coherent memory for sps data\n");
goto get_config_err;
}
memset(sps_connect_info->desc.base, 0x00, sps_connect_info->desc.size);
/* Establish connection between peripheral and memory endpoint */
rc = sps_connect(sps_pipe_info, sps_connect_info);
if (rc) {
pr_err("sps_connect() fail pipe_handle=0x%lx, rc = %d\n",
(uintptr_t)sps_pipe_info, rc);
goto sps_connect_err;
}
sps_event->mode = SPS_TRIGGER_CALLBACK;
if (is_producer)
sps_event->options = SPS_O_EOT | SPS_O_DESC_DONE;
else
sps_event->options = SPS_O_EOT;
sps_event->xfer_done = NULL;
sps_event->user = (void *)pce_dev;
pr_debug("success, %s : pipe_handle=0x%lx, desc fifo base (phy) = 0x%pK\n",
is_producer ? "PRODUCER(RX/OUT)" : "CONSUMER(TX/IN)",
(uintptr_t)sps_pipe_info, &sps_connect_info->desc.phys_base);
goto out;
sps_connect_err:
dma_free_coherent(pce_dev->pdev,
sps_connect_info->desc.size,
sps_connect_info->desc.base,
sps_connect_info->desc.phys_base);
get_config_err:
sps_free_endpoint(sps_pipe_info);
out:
return rc;
}
/**
* Disconnect and Deallocate a CE peripheral's SPS endpoint
*
* This function disconnect endpoint and deallocates
* endpoint context.
*
* This function should only be called once typically
* during driver remove.
*
* @pce_dev - Pointer to qce_device structure
* @ep - Pointer to sps endpoint data structure
*
*/
static void qce_sps_exit_ep_conn(struct qce_device *pce_dev,
struct qce_sps_ep_conn_data *ep)
{
struct sps_pipe *sps_pipe_info = ep->pipe;
struct sps_connect *sps_connect_info = &ep->connect;
sps_disconnect(sps_pipe_info);
dma_free_coherent(pce_dev->pdev,
sps_connect_info->desc.size,
sps_connect_info->desc.base,
sps_connect_info->desc.phys_base);
sps_free_endpoint(sps_pipe_info);
}
static void qce_sps_release_bam(struct qce_device *pce_dev)
{
struct bam_registration_info *pbam;
mutex_lock(&bam_register_lock);
pbam = pce_dev->pbam;
if (pbam == NULL)
goto ret;
pbam->cnt--;
if (pbam->cnt > 0)
goto ret;
if (pce_dev->ce_sps.bam_handle) {
sps_deregister_bam_device(pce_dev->ce_sps.bam_handle);
pr_debug("deregister bam handle 0x%lx\n",
pce_dev->ce_sps.bam_handle);
pce_dev->ce_sps.bam_handle = 0;
}
iounmap(pbam->bam_iobase);
pr_debug("delete bam 0x%x\n", pbam->bam_mem);
list_del(&pbam->qlist);
kfree(pbam);
ret:
pce_dev->pbam = NULL;
mutex_unlock(&bam_register_lock);
}
static int qce_sps_get_bam(struct qce_device *pce_dev)
{
int rc = 0;
struct sps_bam_props bam = {0};
struct bam_registration_info *pbam = NULL;
struct bam_registration_info *p;
uint32_t bam_cfg = 0;
mutex_lock(&bam_register_lock);
list_for_each_entry(p, &qce50_bam_list, qlist) {
if (p->bam_mem == pce_dev->bam_mem) {
pbam = p; /* found */
break;
}
}
if (pbam) {
pr_debug("found bam 0x%x\n", pbam->bam_mem);
pbam->cnt++;
pce_dev->ce_sps.bam_handle = pbam->handle;
pce_dev->ce_sps.bam_mem = pbam->bam_mem;
pce_dev->ce_sps.bam_iobase = pbam->bam_iobase;
pce_dev->pbam = pbam;
pce_dev->support_cmd_dscr = pbam->support_cmd_dscr;
goto ret;
}
pbam = kzalloc(sizeof(struct bam_registration_info), GFP_KERNEL);
if (!pbam) {
pr_err("qce50 Memory allocation of bam FAIL, error %ld\n",
PTR_ERR(pbam));
rc = -ENOMEM;
goto ret;
}
pbam->cnt = 1;
pbam->bam_mem = pce_dev->bam_mem;
pbam->bam_iobase = ioremap_nocache(pce_dev->bam_mem,
pce_dev->bam_mem_size);
if (!pbam->bam_iobase) {
kfree(pbam);
rc = -ENOMEM;
pr_err("Can not map BAM io memory\n");
goto ret;
}
pce_dev->ce_sps.bam_mem = pbam->bam_mem;
pce_dev->ce_sps.bam_iobase = pbam->bam_iobase;
pbam->handle = 0;
pr_debug("allocate bam 0x%x\n", pbam->bam_mem);
bam_cfg = readl_relaxed(pce_dev->ce_sps.bam_iobase +
CRYPTO_BAM_CNFG_BITS_REG);
pbam->support_cmd_dscr = (bam_cfg & CRYPTO_BAM_CD_ENABLE_MASK) ?
true : false;
if (pbam->support_cmd_dscr == false) {
pr_info("qce50 don't support command descriptor. bam_cfg%x\n",
bam_cfg);
pce_dev->no_get_around = false;
}
pce_dev->support_cmd_dscr = pbam->support_cmd_dscr;
bam.phys_addr = pce_dev->ce_sps.bam_mem;
bam.virt_addr = pce_dev->ce_sps.bam_iobase;
/*
* This event thresold value is only significant for BAM-to-BAM
* transfer. It's ignored for BAM-to-System mode transfer.
*/
bam.event_threshold = 0x10; /* Pipe event threshold */
/*
* This threshold controls when the BAM publish
* the descriptor size on the sideband interface.
* SPS HW will only be used when
* data transfer size > 64 bytes.
*/
bam.summing_threshold = 64;
/* SPS driver wll handle the crypto BAM IRQ */
bam.irq = (u32)pce_dev->ce_sps.bam_irq;
/*
* Set flag to indicate BAM global device control is managed
* remotely.
*/
if ((pce_dev->support_cmd_dscr == false) || (pce_dev->is_shared))
bam.manage = SPS_BAM_MGR_DEVICE_REMOTE;
else
bam.manage = SPS_BAM_MGR_LOCAL;
bam.ee = pce_dev->ce_sps.bam_ee;
pr_debug("bam physical base=0x%lx\n", (uintptr_t)bam.phys_addr);
pr_debug("bam virtual base=0x%pK\n", bam.virt_addr);
/* Register CE Peripheral BAM device to SPS driver */
rc = sps_register_bam_device(&bam, &pbam->handle);
if (rc) {
pr_err("sps_register_bam_device() failed! err=%d", rc);
rc = -EIO;
iounmap(pbam->bam_iobase);
kfree(pbam);
goto ret;
}
pce_dev->pbam = pbam;
list_add_tail(&pbam->qlist, &qce50_bam_list);
pce_dev->ce_sps.bam_handle = pbam->handle;
ret:
mutex_unlock(&bam_register_lock);
return rc;
}
/**
* Initialize SPS HW connected with CE core
*
* This function register BAM HW resources with
* SPS driver and then initialize 2 SPS endpoints
*
* This function should only be called once typically
* during driver probe.
*
* @pce_dev - Pointer to qce_device structure
*
* @return - 0 if successful else negative value.
*
*/
static int qce_sps_init(struct qce_device *pce_dev)
{
int rc = 0;
rc = qce_sps_get_bam(pce_dev);
if (rc)
return rc;
pr_debug("BAM device registered. bam_handle=0x%lx\n",
pce_dev->ce_sps.bam_handle);
rc = qce_sps_init_ep_conn(pce_dev, &pce_dev->ce_sps.producer, true);
if (rc)
goto sps_connect_producer_err;
rc = qce_sps_init_ep_conn(pce_dev, &pce_dev->ce_sps.consumer, false);
if (rc)
goto sps_connect_consumer_err;
pce_dev->ce_sps.out_transfer.user = pce_dev->ce_sps.producer.pipe;
pce_dev->ce_sps.in_transfer.user = pce_dev->ce_sps.consumer.pipe;
pr_info(" Qualcomm MSM CE-BAM at 0x%016llx irq %d\n",
(unsigned long long)pce_dev->ce_sps.bam_mem,
(unsigned int)pce_dev->ce_sps.bam_irq);
return rc;
sps_connect_consumer_err:
qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_sps.producer);
sps_connect_producer_err:
qce_sps_release_bam(pce_dev);
return rc;
}
/**
* De-initialize SPS HW connected with CE core
*
* This function deinitialize SPS endpoints and then
* deregisters BAM resources from SPS driver.
*
* This function should only be called once typically
* during driver remove.
*
* @pce_dev - Pointer to qce_device structure
*
*/
static void qce_sps_exit(struct qce_device *pce_dev)
{
qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_sps.consumer);
qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_sps.producer);
qce_sps_release_bam(pce_dev);
}
static void print_notify_debug(struct sps_event_notify *notify)
{
phys_addr_t addr = DESC_FULL_ADDR(notify->data.transfer.iovec.flags,
notify->data.transfer.iovec.addr);
pr_debug("sps ev_id=%d, addr=0x%pa, size=0x%x, flags=0x%x user=0x%pK\n",
notify->event_id, &addr,
notify->data.transfer.iovec.size,
notify->data.transfer.iovec.flags,
notify->data.transfer.user);
}
static void _aead_sps_producer_callback(struct sps_event_notify *notify)
{
struct qce_device *pce_dev = (struct qce_device *)
((struct sps_event_notify *)notify)->user;
pce_dev->ce_sps.notify = *notify;
print_notify_debug(notify);
if (pce_dev->ce_sps.producer_state == QCE_PIPE_STATE_COMP) {
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
_aead_complete(pce_dev);
} else {
int rc = 0;
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_COMP;
pce_dev->ce_sps.out_transfer.iovec_count = 0;
_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.result_dump),
CRYPTO_RESULT_DUMP_SIZE,
&pce_dev->ce_sps.out_transfer);
_qce_set_flag(&pce_dev->ce_sps.out_transfer,
SPS_IOVEC_FLAG_INT);
rc = sps_transfer(pce_dev->ce_sps.producer.pipe,
&pce_dev->ce_sps.out_transfer);
if (rc) {
pr_err("sps_xfr() fail (producer pipe=0x%lx) rc = %d\n",
(uintptr_t)pce_dev->ce_sps.producer.pipe, rc);
}
}
}
static void _sha_sps_producer_callback(struct sps_event_notify *notify)
{
struct qce_device *pce_dev = (struct qce_device *)
((struct sps_event_notify *)notify)->user;
pce_dev->ce_sps.notify = *notify;
print_notify_debug(notify);
_sha_complete(pce_dev);
}
static void _f9_sps_producer_callback(struct sps_event_notify *notify)
{
struct qce_device *pce_dev = (struct qce_device *)
((struct sps_event_notify *)notify)->user;
pce_dev->ce_sps.notify = *notify;
print_notify_debug(notify);
_f9_complete(pce_dev);
}
static void _f8_sps_producer_callback(struct sps_event_notify *notify)
{
struct qce_device *pce_dev = (struct qce_device *)
((struct sps_event_notify *)notify)->user;
pce_dev->ce_sps.notify = *notify;
print_notify_debug(notify);
_f8_complete(pce_dev);
}
static void _ablk_cipher_sps_producer_callback(struct sps_event_notify *notify)
{
struct qce_device *pce_dev = (struct qce_device *)
((struct sps_event_notify *)notify)->user;
pce_dev->ce_sps.notify = *notify;
print_notify_debug(notify);
if (pce_dev->ce_sps.producer_state == QCE_PIPE_STATE_COMP) {
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
_ablk_cipher_complete(pce_dev);
} else {
int rc = 0;
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_COMP;
pce_dev->ce_sps.out_transfer.iovec_count = 0;
_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.result_dump),
CRYPTO_RESULT_DUMP_SIZE,
&pce_dev->ce_sps.out_transfer);
_qce_set_flag(&pce_dev->ce_sps.out_transfer,
SPS_IOVEC_FLAG_INT);
rc = sps_transfer(pce_dev->ce_sps.producer.pipe,
&pce_dev->ce_sps.out_transfer);
if (rc) {
pr_err("sps_xfr() fail (producer pipe=0x%lx) rc = %d\n",
(uintptr_t)pce_dev->ce_sps.producer.pipe, rc);
}
}
};
static void qce_add_cmd_element(struct qce_device *pdev,
struct sps_command_element **cmd_ptr, u32 addr,
u32 data, struct sps_command_element **populate)
{
(*cmd_ptr)->addr = (uint32_t)(addr + pdev->phy_iobase);
(*cmd_ptr)->command = 0;
(*cmd_ptr)->data = data;
(*cmd_ptr)->mask = 0xFFFFFFFF;
(*cmd_ptr)->reserved = 0;
if (populate != NULL)
*populate = *cmd_ptr;
(*cmd_ptr)++;
}
static int _setup_cipher_aes_cmdlistptrs(struct qce_device *pdev,
unsigned char **pvaddr, enum qce_cipher_mode_enum mode,
bool key_128)
{
struct sps_command_element *ce_vaddr;
uintptr_t ce_vaddr_start;
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
struct qce_cmdlist_info *pcl_info = NULL;
int i = 0;
uint32_t encr_cfg = 0;
uint32_t key_reg = 0;
uint32_t xts_key_reg = 0;
uint32_t iv_reg = 0;
*pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
pdev->ce_sps.ce_burst_size);
ce_vaddr = (struct sps_command_element *)(*pvaddr);
ce_vaddr_start = (uintptr_t)(*pvaddr);
/*
* Designate chunks of the allocated memory to various
* command list pointers related to AES cipher operations defined
* in ce_cmdlistptrs_ops structure.
*/
switch (mode) {
case QCE_MODE_CBC:
case QCE_MODE_CTR:
if (key_128 == true) {
cmdlistptr->cipher_aes_128_cbc_ctr.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_aes_128_cbc_ctr);
if (mode == QCE_MODE_CBC)
encr_cfg = pdev->reg.encr_cfg_aes_cbc_128;
else
encr_cfg = pdev->reg.encr_cfg_aes_ctr_128;
iv_reg = 4;
key_reg = 4;
xts_key_reg = 0;
} else {
cmdlistptr->cipher_aes_256_cbc_ctr.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_aes_256_cbc_ctr);
if (mode == QCE_MODE_CBC)
encr_cfg = pdev->reg.encr_cfg_aes_cbc_256;
else
encr_cfg = pdev->reg.encr_cfg_aes_ctr_256;
iv_reg = 4;
key_reg = 8;
xts_key_reg = 0;
}
break;
case QCE_MODE_ECB:
if (key_128 == true) {
cmdlistptr->cipher_aes_128_ecb.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_aes_128_ecb);
encr_cfg = pdev->reg.encr_cfg_aes_ecb_128;
iv_reg = 0;
key_reg = 4;
xts_key_reg = 0;
} else {
cmdlistptr->cipher_aes_256_ecb.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_aes_256_ecb);
encr_cfg = pdev->reg.encr_cfg_aes_ecb_256;
iv_reg = 0;
key_reg = 8;
xts_key_reg = 0;
}
break;
case QCE_MODE_XTS:
if (key_128 == true) {
cmdlistptr->cipher_aes_128_xts.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_aes_128_xts);
encr_cfg = pdev->reg.encr_cfg_aes_xts_128;
iv_reg = 4;
key_reg = 4;
xts_key_reg = 4;
} else {
cmdlistptr->cipher_aes_256_xts.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_aes_256_xts);
encr_cfg = pdev->reg.encr_cfg_aes_xts_256;
iv_reg = 4;
key_reg = 8;
xts_key_reg = 8;
}
break;
default:
pr_err("Unknown mode of operation %d received, exiting now\n",
mode);
return -EINVAL;
break;
}
/* clear status register */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
&pcl_info->seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
&pcl_info->encr_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
&pcl_info->encr_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
&pcl_info->encr_seg_start);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG,
(uint32_t)0xffffffff, &pcl_info->encr_mask);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG0,
(uint32_t)0xffffffff, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG1,
(uint32_t)0xffffffff, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG2,
(uint32_t)0xffffffff, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
&pcl_info->auth_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
&pcl_info->encr_key);
for (i = 1; i < key_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
0, NULL);
if (xts_key_reg) {
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_XTS_KEY0_REG,
0, &pcl_info->encr_xts_key);
for (i = 1; i < xts_key_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_ENCR_XTS_KEY0_REG +
i * sizeof(uint32_t)), 0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr,
CRYPTO_ENCR_XTS_DU_SIZE_REG, 0,
&pcl_info->encr_xts_du_size);
}
if (iv_reg) {
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
&pcl_info->encr_cntr_iv);
for (i = 1; i < iv_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
0, NULL);
}
/* Add dummy to align size to burst-size multiple */
if (mode == QCE_MODE_XTS) {
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
0, &pcl_info->auth_seg_size);
} else {
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
0, &pcl_info->auth_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG,
0, &pcl_info->auth_seg_size);
}
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_le, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
(1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
*pvaddr = (unsigned char *) ce_vaddr;
return 0;
}
static int _setup_cipher_des_cmdlistptrs(struct qce_device *pdev,
unsigned char **pvaddr, enum qce_cipher_alg_enum alg,
bool mode_cbc)
{
struct sps_command_element *ce_vaddr;
uintptr_t ce_vaddr_start;
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
struct qce_cmdlist_info *pcl_info = NULL;
int i = 0;
uint32_t encr_cfg = 0;
uint32_t key_reg = 0;
uint32_t iv_reg = 0;
*pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
pdev->ce_sps.ce_burst_size);
ce_vaddr = (struct sps_command_element *)(*pvaddr);
ce_vaddr_start = (uintptr_t)(*pvaddr);
/*
* Designate chunks of the allocated memory to various
* command list pointers related to cipher operations defined
* in ce_cmdlistptrs_ops structure.
*/
switch (alg) {
case CIPHER_ALG_DES:
if (mode_cbc) {
cmdlistptr->cipher_des_cbc.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_des_cbc);
encr_cfg = pdev->reg.encr_cfg_des_cbc;
iv_reg = 2;
key_reg = 2;
} else {
cmdlistptr->cipher_des_ecb.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_des_ecb);
encr_cfg = pdev->reg.encr_cfg_des_ecb;
iv_reg = 0;
key_reg = 2;
}
break;
case CIPHER_ALG_3DES:
if (mode_cbc) {
cmdlistptr->cipher_3des_cbc.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_3des_cbc);
encr_cfg = pdev->reg.encr_cfg_3des_cbc;
iv_reg = 2;
key_reg = 6;
} else {
cmdlistptr->cipher_3des_ecb.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_3des_ecb);
encr_cfg = pdev->reg.encr_cfg_3des_ecb;
iv_reg = 0;
key_reg = 6;
}
break;
default:
pr_err("Unknown algorithms %d received, exiting now\n", alg);
return -EINVAL;
break;
}
/* clear status register */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
&pcl_info->seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
&pcl_info->encr_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
&pcl_info->encr_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
&pcl_info->encr_seg_start);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
&pcl_info->auth_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
&pcl_info->encr_key);
for (i = 1; i < key_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
0, NULL);
if (iv_reg) {
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
&pcl_info->encr_cntr_iv);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR1_IV1_REG, 0,
NULL);
}
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_le, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
(1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
*pvaddr = (unsigned char *) ce_vaddr;
return 0;
}
static int _setup_auth_cmdlistptrs(struct qce_device *pdev,
unsigned char **pvaddr, enum qce_hash_alg_enum alg,
bool key_128)
{
struct sps_command_element *ce_vaddr;
uintptr_t ce_vaddr_start;
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
struct qce_cmdlist_info *pcl_info = NULL;
int i = 0;
uint32_t key_reg = 0;
uint32_t auth_cfg = 0;
uint32_t iv_reg = 0;
*pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
pdev->ce_sps.ce_burst_size);
ce_vaddr_start = (uintptr_t)(*pvaddr);
ce_vaddr = (struct sps_command_element *)(*pvaddr);
/*
* Designate chunks of the allocated memory to various
* command list pointers related to authentication operations
* defined in ce_cmdlistptrs_ops structure.
*/
switch (alg) {
case QCE_HASH_SHA1:
cmdlistptr->auth_sha1.cmdlist = (uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->auth_sha1);
auth_cfg = pdev->reg.auth_cfg_sha1;
iv_reg = 5;
/* clear status register */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
break;
case QCE_HASH_SHA256:
cmdlistptr->auth_sha256.cmdlist = (uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->auth_sha256);
auth_cfg = pdev->reg.auth_cfg_sha256;
iv_reg = 8;
/* clear status register */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
/* 1 dummy write */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
0, NULL);
break;
case QCE_HASH_SHA1_HMAC:
cmdlistptr->auth_sha1_hmac.cmdlist = (uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->auth_sha1_hmac);
auth_cfg = pdev->reg.auth_cfg_hmac_sha1;
key_reg = 16;
iv_reg = 5;
/* clear status register */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
break;
case QCE_HASH_SHA256_HMAC:
cmdlistptr->auth_sha256_hmac.cmdlist = (uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->auth_sha256_hmac);
auth_cfg = pdev->reg.auth_cfg_hmac_sha256;
key_reg = 16;
iv_reg = 8;
/* clear status register */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0,
NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
/* 1 dummy write */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
0, NULL);
break;
case QCE_HASH_AES_CMAC:
if (key_128 == true) {
cmdlistptr->auth_aes_128_cmac.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->auth_aes_128_cmac);
auth_cfg = pdev->reg.auth_cfg_cmac_128;
key_reg = 4;
} else {
cmdlistptr->auth_aes_256_cmac.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->auth_aes_256_cmac);
auth_cfg = pdev->reg.auth_cfg_cmac_256;
key_reg = 8;
}
/* clear status register */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0,
NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
/* 1 dummy write */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
0, NULL);
break;
default:
pr_err("Unknown algorithms %d received, exiting now\n", alg);
return -EINVAL;
break;
}
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
&pcl_info->seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0,
&pcl_info->encr_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
auth_cfg, &pcl_info->auth_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
&pcl_info->auth_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
&pcl_info->auth_seg_start);
if (alg == QCE_HASH_AES_CMAC) {
/* reset auth iv, bytecount and key registers */
for (i = 0; i < 16; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)),
0, NULL);
for (i = 0; i < 16; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)),
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
0, NULL);
} else {
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0,
&pcl_info->auth_iv);
for (i = 1; i < iv_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)),
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
0, &pcl_info->auth_bytecount);
}
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL);
if (key_reg) {
qce_add_cmd_element(pdev, &ce_vaddr,
CRYPTO_AUTH_KEY0_REG, 0, &pcl_info->auth_key);
for (i = 1; i < key_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)),
0, NULL);
}
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_le, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
(1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
*pvaddr = (unsigned char *) ce_vaddr;
return 0;
}
static int _setup_aead_cmdlistptrs(struct qce_device *pdev,
unsigned char **pvaddr,
uint32_t alg,
uint32_t mode,
uint32_t key_size,
bool sha1)
{
struct sps_command_element *ce_vaddr;
uintptr_t ce_vaddr_start;
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
struct qce_cmdlist_info *pcl_info = NULL;
uint32_t key_reg;
uint32_t iv_reg;
uint32_t i;
uint32_t enciv_in_word;
uint32_t encr_cfg;
*pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
pdev->ce_sps.ce_burst_size);
ce_vaddr_start = (uintptr_t)(*pvaddr);
ce_vaddr = (struct sps_command_element *)(*pvaddr);
switch (alg) {
case CIPHER_ALG_DES:
switch (mode) {
case QCE_MODE_CBC:
if (sha1) {
cmdlistptr->aead_hmac_sha1_cbc_des.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->
aead_hmac_sha1_cbc_des);
} else {
cmdlistptr->aead_hmac_sha256_cbc_des.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->
aead_hmac_sha256_cbc_des);
}
encr_cfg = pdev->reg.encr_cfg_des_cbc;
break;
default:
return -EINVAL;
};
enciv_in_word = 2;
break;
case CIPHER_ALG_3DES:
switch (mode) {
case QCE_MODE_CBC:
if (sha1) {
cmdlistptr->aead_hmac_sha1_cbc_3des.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->
aead_hmac_sha1_cbc_3des);
} else {
cmdlistptr->aead_hmac_sha256_cbc_3des.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->
aead_hmac_sha256_cbc_3des);
}
encr_cfg = pdev->reg.encr_cfg_3des_cbc;
break;
default:
return -EINVAL;
};
enciv_in_word = 2;
break;
case CIPHER_ALG_AES:
switch (mode) {
case QCE_MODE_CBC:
if (key_size == AES128_KEY_SIZE) {
if (sha1) {
cmdlistptr->
aead_hmac_sha1_cbc_aes_128.
cmdlist = (uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->
aead_hmac_sha1_cbc_aes_128);
} else {
cmdlistptr->
aead_hmac_sha256_cbc_aes_128.
cmdlist = (uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->
aead_hmac_sha256_cbc_aes_128);
}
encr_cfg = pdev->reg.encr_cfg_aes_cbc_128;
} else if (key_size == AES256_KEY_SIZE) {
if (sha1) {
cmdlistptr->
aead_hmac_sha1_cbc_aes_256.
cmdlist = (uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->
aead_hmac_sha1_cbc_aes_256);
} else {
cmdlistptr->
aead_hmac_sha256_cbc_aes_256.
cmdlist = (uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->
aead_hmac_sha256_cbc_aes_256);
}
encr_cfg = pdev->reg.encr_cfg_aes_cbc_256;
} else {
return -EINVAL;
}
break;
default:
return -EINVAL;
};
enciv_in_word = 4;
break;
default:
return -EINVAL;
};
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
key_reg = key_size/sizeof(uint32_t);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
&pcl_info->encr_key);
for (i = 1; i < key_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
0, NULL);
if (mode != QCE_MODE_ECB) {
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
&pcl_info->encr_cntr_iv);
for (i = 1; i < enciv_in_word; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
0, NULL);
};
if (sha1)
iv_reg = 5;
else
iv_reg = 8;
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0,
&pcl_info->auth_iv);
for (i = 1; i < iv_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)),
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
0, &pcl_info->auth_bytecount);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL);
key_reg = SHA_HMAC_KEY_SIZE/sizeof(uint32_t);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_KEY0_REG, 0,
&pcl_info->auth_key);
for (i = 1; i < key_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)), 0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
&pcl_info->seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
&pcl_info->encr_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
&pcl_info->encr_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
&pcl_info->encr_seg_start);
if (sha1)
qce_add_cmd_element(
pdev,
&ce_vaddr,
CRYPTO_AUTH_SEG_CFG_REG,
pdev->reg.auth_cfg_aead_sha1_hmac,
&pcl_info->auth_seg_cfg);
else
qce_add_cmd_element(
pdev,
&ce_vaddr,
CRYPTO_AUTH_SEG_CFG_REG,
pdev->reg.auth_cfg_aead_sha256_hmac,
&pcl_info->auth_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
&pcl_info->auth_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
&pcl_info->auth_seg_start);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_le, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
(1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
*pvaddr = (unsigned char *) ce_vaddr;
return 0;
}
static int _setup_aead_ccm_cmdlistptrs(struct qce_device *pdev,
unsigned char **pvaddr, bool key_128)
{
struct sps_command_element *ce_vaddr;
uintptr_t ce_vaddr_start;
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
struct qce_cmdlist_info *pcl_info = NULL;
int i = 0;
uint32_t encr_cfg = 0;
uint32_t auth_cfg = 0;
uint32_t key_reg = 0;
*pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
pdev->ce_sps.ce_burst_size);
ce_vaddr_start = (uintptr_t)(*pvaddr);
ce_vaddr = (struct sps_command_element *)(*pvaddr);
/*
* Designate chunks of the allocated memory to various
* command list pointers related to aead operations
* defined in ce_cmdlistptrs_ops structure.
*/
if (key_128 == true) {
cmdlistptr->aead_aes_128_ccm.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->aead_aes_128_ccm);
auth_cfg = pdev->reg.auth_cfg_aes_ccm_128;
encr_cfg = pdev->reg.encr_cfg_aes_ccm_128;
key_reg = 4;
} else {
cmdlistptr->aead_aes_256_ccm.cmdlist =
(uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->aead_aes_256_ccm);
auth_cfg = pdev->reg.auth_cfg_aes_ccm_256;
encr_cfg = pdev->reg.encr_cfg_aes_ccm_256;
key_reg = 8;
}
/* clear status register */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
&pcl_info->seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG,
encr_cfg, &pcl_info->encr_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
&pcl_info->encr_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
&pcl_info->encr_seg_start);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG,
(uint32_t)0xffffffff, &pcl_info->encr_mask);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG0,
(uint32_t)0xffffffff, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG1,
(uint32_t)0xffffffff, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG2,
(uint32_t)0xffffffff, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
auth_cfg, &pcl_info->auth_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
&pcl_info->auth_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
&pcl_info->auth_seg_start);
/* reset auth iv, bytecount and key registers */
for (i = 0; i < 8; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)),
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG,
0, NULL);
for (i = 0; i < 16; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)),
0, NULL);
/* set auth key */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_KEY0_REG, 0,
&pcl_info->auth_key);
for (i = 1; i < key_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)),
0, NULL);
/* set NONCE info */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_INFO_NONCE0_REG, 0,
&pcl_info->auth_nonce_info);
for (i = 1; i < 4; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_INFO_NONCE0_REG +
i * sizeof(uint32_t)), 0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
&pcl_info->encr_key);
for (i = 1; i < key_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
&pcl_info->encr_cntr_iv);
for (i = 1; i < 4; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_CCM_INT_CNTR0_REG, 0,
&pcl_info->encr_ccm_cntr_iv);
for (i = 1; i < 4; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_ENCR_CCM_INT_CNTR0_REG + i * sizeof(uint32_t)),
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_le, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
(1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
*pvaddr = (unsigned char *) ce_vaddr;
return 0;
}
static int _setup_f8_cmdlistptrs(struct qce_device *pdev,
unsigned char **pvaddr, enum qce_ota_algo_enum alg)
{
struct sps_command_element *ce_vaddr;
uintptr_t ce_vaddr_start;
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
struct qce_cmdlist_info *pcl_info = NULL;
int i = 0;
uint32_t encr_cfg = 0;
uint32_t key_reg = 4;
*pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
pdev->ce_sps.ce_burst_size);
ce_vaddr = (struct sps_command_element *)(*pvaddr);
ce_vaddr_start = (uintptr_t)(*pvaddr);
/*
* Designate chunks of the allocated memory to various
* command list pointers related to f8 cipher algorithm defined
* in ce_cmdlistptrs_ops structure.
*/
switch (alg) {
case QCE_OTA_ALGO_KASUMI:
cmdlistptr->f8_kasumi.cmdlist = (uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->f8_kasumi);
encr_cfg = pdev->reg.encr_cfg_kasumi;
break;
case QCE_OTA_ALGO_SNOW3G:
default:
cmdlistptr->f8_snow3g.cmdlist = (uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->f8_snow3g);
encr_cfg = pdev->reg.encr_cfg_snow3g;
break;
}
/* clear status register */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
0, NULL);
/* set config to big endian */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
&pcl_info->seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
&pcl_info->encr_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
&pcl_info->encr_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
&pcl_info->encr_seg_start);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
&pcl_info->auth_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
0, &pcl_info->auth_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG,
0, &pcl_info->auth_seg_start);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
&pcl_info->encr_key);
for (i = 1; i < key_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
&pcl_info->encr_cntr_iv);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR1_IV1_REG, 0,
NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_le, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
(1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
*pvaddr = (unsigned char *) ce_vaddr;
return 0;
}
static int _setup_f9_cmdlistptrs(struct qce_device *pdev,
unsigned char **pvaddr, enum qce_ota_algo_enum alg)
{
struct sps_command_element *ce_vaddr;
uintptr_t ce_vaddr_start;
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
struct qce_cmdlist_info *pcl_info = NULL;
int i = 0;
uint32_t auth_cfg = 0;
uint32_t iv_reg = 0;
*pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
pdev->ce_sps.ce_burst_size);
ce_vaddr_start = (uintptr_t)(*pvaddr);
ce_vaddr = (struct sps_command_element *)(*pvaddr);
/*
* Designate chunks of the allocated memory to various
* command list pointers related to authentication operations
* defined in ce_cmdlistptrs_ops structure.
*/
switch (alg) {
case QCE_OTA_ALGO_KASUMI:
cmdlistptr->f9_kasumi.cmdlist = (uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->f9_kasumi);
auth_cfg = pdev->reg.auth_cfg_kasumi;
break;
case QCE_OTA_ALGO_SNOW3G:
default:
cmdlistptr->f9_snow3g.cmdlist = (uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->f9_snow3g);
auth_cfg = pdev->reg.auth_cfg_snow3g;
};
/* clear status register */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
0, NULL);
/* set config to big endian */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
iv_reg = 5;
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
&pcl_info->seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0,
&pcl_info->encr_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
auth_cfg, &pcl_info->auth_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
&pcl_info->auth_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
&pcl_info->auth_seg_start);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0,
&pcl_info->auth_iv);
for (i = 1; i < iv_reg; i++) {
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)),
0, NULL);
}
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
0, &pcl_info->auth_bytecount);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
pdev->reg.crypto_cfg_le, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
(1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
*pvaddr = (unsigned char *) ce_vaddr;
return 0;
}
static int _setup_unlock_pipe_cmdlistptrs(struct qce_device *pdev,
unsigned char **pvaddr)
{
struct sps_command_element *ce_vaddr;
uintptr_t ce_vaddr_start = (uintptr_t)(*pvaddr);
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
struct qce_cmdlist_info *pcl_info = NULL;
*pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
pdev->ce_sps.ce_burst_size);
ce_vaddr = (struct sps_command_element *)(*pvaddr);
cmdlistptr->unlock_all_pipes.cmdlist = (uintptr_t)ce_vaddr;
pcl_info = &(cmdlistptr->unlock_all_pipes);
/*
* Designate chunks of the allocated memory to command list
* to unlock pipes.
*/
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
CRYPTO_CONFIG_RESET, NULL);
pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
*pvaddr = (unsigned char *) ce_vaddr;
return 0;
}
static int qce_setup_cmdlistptrs(struct qce_device *pdev,
unsigned char **pvaddr)
{
struct sps_command_element *ce_vaddr =
(struct sps_command_element *)(*pvaddr);
/*
* Designate chunks of the allocated memory to various
* command list pointers related to operations defined
* in ce_cmdlistptrs_ops structure.
*/
ce_vaddr =
(struct sps_command_element *)ALIGN(((uintptr_t) ce_vaddr),
pdev->ce_sps.ce_burst_size);
*pvaddr = (unsigned char *) ce_vaddr;
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_CBC, true);
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_CTR, true);
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_ECB, true);
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_XTS, true);
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_CBC, false);
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_CTR, false);
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_ECB, false);
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_XTS, false);
_setup_cipher_des_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_DES, true);
_setup_cipher_des_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_DES, false);
_setup_cipher_des_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_3DES, true);
_setup_cipher_des_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_3DES, false);
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_SHA1, false);
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_SHA256, false);
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_SHA1_HMAC, false);
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_SHA256_HMAC, false);
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_AES_CMAC, true);
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_AES_CMAC, false);
_setup_aead_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_DES, QCE_MODE_CBC,
DES_KEY_SIZE, true);
_setup_aead_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_3DES, QCE_MODE_CBC,
DES3_EDE_KEY_SIZE, true);
_setup_aead_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_AES, QCE_MODE_CBC,
AES128_KEY_SIZE, true);
_setup_aead_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_AES, QCE_MODE_CBC,
AES256_KEY_SIZE, true);
_setup_aead_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_DES, QCE_MODE_CBC,
DES_KEY_SIZE, false);
_setup_aead_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_3DES, QCE_MODE_CBC,
DES3_EDE_KEY_SIZE, false);
_setup_aead_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_AES, QCE_MODE_CBC,
AES128_KEY_SIZE, false);
_setup_aead_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_AES, QCE_MODE_CBC,
AES256_KEY_SIZE, false);
_setup_aead_ccm_cmdlistptrs(pdev, pvaddr, true);
_setup_aead_ccm_cmdlistptrs(pdev, pvaddr, false);
_setup_f8_cmdlistptrs(pdev, pvaddr, QCE_OTA_ALGO_KASUMI);
_setup_f8_cmdlistptrs(pdev, pvaddr, QCE_OTA_ALGO_SNOW3G);
_setup_f9_cmdlistptrs(pdev, pvaddr, QCE_OTA_ALGO_KASUMI);
_setup_f9_cmdlistptrs(pdev, pvaddr, QCE_OTA_ALGO_SNOW3G);
_setup_unlock_pipe_cmdlistptrs(pdev, pvaddr);
return 0;
}
static int qce_setup_ce_sps_data(struct qce_device *pce_dev)
{
unsigned char *vaddr;
vaddr = pce_dev->coh_vmem;
vaddr = (unsigned char *)ALIGN(((uintptr_t)vaddr),
pce_dev->ce_sps.ce_burst_size);
/* Allow for 256 descriptor (cmd and data) entries per pipe */
pce_dev->ce_sps.in_transfer.iovec = (struct sps_iovec *)vaddr;
pce_dev->ce_sps.in_transfer.iovec_phys =
(uintptr_t)GET_PHYS_ADDR(vaddr);
vaddr += QCE_MAX_NUM_DSCR * sizeof(struct sps_iovec);
pce_dev->ce_sps.out_transfer.iovec = (struct sps_iovec *)vaddr;
pce_dev->ce_sps.out_transfer.iovec_phys =
(uintptr_t)GET_PHYS_ADDR(vaddr);
vaddr += QCE_MAX_NUM_DSCR * sizeof(struct sps_iovec);
if (pce_dev->support_cmd_dscr)
qce_setup_cmdlistptrs(pce_dev, &vaddr);
vaddr = (unsigned char *)ALIGN(((uintptr_t)vaddr),
pce_dev->ce_sps.ce_burst_size);
pce_dev->ce_sps.result_dump = (uintptr_t)vaddr;
pce_dev->ce_sps.result = (struct ce_result_dump_format *)vaddr;
vaddr += CRYPTO_RESULT_DUMP_SIZE;
pce_dev->ce_sps.ignore_buffer = (uintptr_t)vaddr;
vaddr += pce_dev->ce_sps.ce_burst_size * 2;
if ((vaddr - pce_dev->coh_vmem) > pce_dev->memsize)
panic("qce50: Not enough coherent memory. Allocate %x , need %lx\n",
pce_dev->memsize, (uintptr_t)vaddr -
(uintptr_t)pce_dev->coh_vmem);
return 0;
}
static int qce_init_ce_cfg_val(struct qce_device *pce_dev)
{
uint32_t beats = (pce_dev->ce_sps.ce_burst_size >> 3) - 1;
uint32_t pipe_pair = pce_dev->ce_sps.pipe_pair_index;
pce_dev->reg.crypto_cfg_be = (beats << CRYPTO_REQ_SIZE) |
BIT(CRYPTO_MASK_DOUT_INTR) | BIT(CRYPTO_MASK_DIN_INTR) |
BIT(CRYPTO_MASK_OP_DONE_INTR) | (0 << CRYPTO_HIGH_SPD_EN_N) |
(pipe_pair << CRYPTO_PIPE_SET_SELECT);
pce_dev->reg.crypto_cfg_le =
(pce_dev->reg.crypto_cfg_be | CRYPTO_LITTLE_ENDIAN_MASK);
/* Initialize encr_cfg register for AES alg */
pce_dev->reg.encr_cfg_aes_cbc_128 =
(CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
pce_dev->reg.encr_cfg_aes_cbc_256 =
(CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
pce_dev->reg.encr_cfg_aes_ctr_128 =
(CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_CTR << CRYPTO_ENCR_MODE);
pce_dev->reg.encr_cfg_aes_ctr_256 =
(CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_CTR << CRYPTO_ENCR_MODE);
pce_dev->reg.encr_cfg_aes_xts_128 =
(CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_XTS << CRYPTO_ENCR_MODE);
pce_dev->reg.encr_cfg_aes_xts_256 =
(CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_XTS << CRYPTO_ENCR_MODE);
pce_dev->reg.encr_cfg_aes_ecb_128 =
(CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
pce_dev->reg.encr_cfg_aes_ecb_256 =
(CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
pce_dev->reg.encr_cfg_aes_ccm_128 =
(CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE)|
(CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM);
pce_dev->reg.encr_cfg_aes_ccm_256 =
(CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE) |
(CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM);
/* Initialize encr_cfg register for DES alg */
pce_dev->reg.encr_cfg_des_ecb =
(CRYPTO_ENCR_KEY_SZ_DES << CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
pce_dev->reg.encr_cfg_des_cbc =
(CRYPTO_ENCR_KEY_SZ_DES << CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
pce_dev->reg.encr_cfg_3des_ecb =
(CRYPTO_ENCR_KEY_SZ_3DES << CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
pce_dev->reg.encr_cfg_3des_cbc =
(CRYPTO_ENCR_KEY_SZ_3DES << CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
/* Initialize encr_cfg register for kasumi/snow3g alg */
pce_dev->reg.encr_cfg_kasumi =
(CRYPTO_ENCR_ALG_KASUMI << CRYPTO_ENCR_ALG);
pce_dev->reg.encr_cfg_snow3g =
(CRYPTO_ENCR_ALG_SNOW_3G << CRYPTO_ENCR_ALG);
/* Initialize auth_cfg register for CMAC alg */
pce_dev->reg.auth_cfg_cmac_128 =
(1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
(CRYPTO_AUTH_MODE_CMAC << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_SIZE_ENUM_16_BYTES << CRYPTO_AUTH_SIZE) |
(CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
(CRYPTO_AUTH_KEY_SZ_AES128 << CRYPTO_AUTH_KEY_SIZE);
pce_dev->reg.auth_cfg_cmac_256 =
(1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
(CRYPTO_AUTH_MODE_CMAC << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_SIZE_ENUM_16_BYTES << CRYPTO_AUTH_SIZE) |
(CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
(CRYPTO_AUTH_KEY_SZ_AES256 << CRYPTO_AUTH_KEY_SIZE);
/* Initialize auth_cfg register for HMAC alg */
pce_dev->reg.auth_cfg_hmac_sha1 =
(CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
pce_dev->reg.auth_cfg_hmac_sha256 =
(CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
/* Initialize auth_cfg register for SHA1/256 alg */
pce_dev->reg.auth_cfg_sha1 =
(CRYPTO_AUTH_MODE_HASH << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
pce_dev->reg.auth_cfg_sha256 =
(CRYPTO_AUTH_MODE_HASH << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
/* Initialize auth_cfg register for AEAD alg */
pce_dev->reg.auth_cfg_aead_sha1_hmac =
(CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
(1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST);
pce_dev->reg.auth_cfg_aead_sha256_hmac =
(CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
(1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST);
pce_dev->reg.auth_cfg_aes_ccm_128 =
(1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
(CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
(CRYPTO_AUTH_KEY_SZ_AES128 << CRYPTO_AUTH_KEY_SIZE) |
((MAX_NONCE/sizeof(uint32_t)) << CRYPTO_AUTH_NONCE_NUM_WORDS);
pce_dev->reg.auth_cfg_aes_ccm_128 &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
pce_dev->reg.auth_cfg_aes_ccm_256 =
(1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
(CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
(CRYPTO_AUTH_KEY_SZ_AES256 << CRYPTO_AUTH_KEY_SIZE) |
((MAX_NONCE/sizeof(uint32_t)) << CRYPTO_AUTH_NONCE_NUM_WORDS);
pce_dev->reg.auth_cfg_aes_ccm_256 &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
/* Initialize auth_cfg register for kasumi/snow3g */
pce_dev->reg.auth_cfg_kasumi =
(CRYPTO_AUTH_ALG_KASUMI << CRYPTO_AUTH_ALG) |
BIT(CRYPTO_FIRST) | BIT(CRYPTO_LAST);
pce_dev->reg.auth_cfg_snow3g =
(CRYPTO_AUTH_ALG_SNOW3G << CRYPTO_AUTH_ALG) |
BIT(CRYPTO_FIRST) | BIT(CRYPTO_LAST);
return 0;
}
static int _qce_aead_ccm_req(void *handle, struct qce_req *q_req)
{
struct qce_device *pce_dev = (struct qce_device *) handle;
struct aead_request *areq = (struct aead_request *) q_req->areq;
uint32_t authsize = q_req->authsize;
uint32_t totallen_in, out_len;
uint32_t hw_pad_out = 0;
int rc = 0;
int ce_burst_size;
struct qce_cmdlist_info *cmdlistinfo = NULL;
ce_burst_size = pce_dev->ce_sps.ce_burst_size;
totallen_in = areq->cryptlen + areq->assoclen;
if (q_req->dir == QCE_ENCRYPT) {
q_req->cryptlen = areq->cryptlen;
out_len = areq->cryptlen + authsize;
hw_pad_out = ALIGN(authsize, ce_burst_size) - authsize;
} else {
q_req->cryptlen = areq->cryptlen - authsize;
out_len = q_req->cryptlen;
hw_pad_out = authsize;
}
if (pce_dev->ce_sps.minor_version == 0) {
/*
* For crypto 5.0 that has burst size alignment requirement
* for data descritpor,
* the agent above(qcrypto) prepares the src scatter list with
* memory starting with associated data, followed by
* data stream to be ciphered.
* The destination scatter list is pointing to the same
* data area as source.
*/
pce_dev->src_nents = count_sg(areq->src, totallen_in);
} else {
pce_dev->src_nents = count_sg(areq->src, areq->cryptlen);
}
pce_dev->assoc_nents = count_sg(areq->assoc, areq->assoclen);
pce_dev->authsize = q_req->authsize;
/* associated data input */
qce_dma_map_sg(pce_dev->pdev, areq->assoc, pce_dev->assoc_nents,
DMA_TO_DEVICE);
/* cipher input */
qce_dma_map_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
DMA_TO_DEVICE);
/* cipher + mac output for encryption */
if (areq->src != areq->dst) {
if (pce_dev->ce_sps.minor_version == 0)
/*
* The destination scatter list is pointing to the same
* data area as src.
* Note, the associated data will be pass-through
* at the begining of destination area.
*/
pce_dev->dst_nents = count_sg(areq->dst,
out_len + areq->assoclen);
else
pce_dev->dst_nents = count_sg(areq->dst, out_len);
qce_dma_map_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents,
DMA_FROM_DEVICE);
} else {
pce_dev->dst_nents = pce_dev->src_nents;
}
if (pce_dev->support_cmd_dscr) {
cmdlistinfo = _ce_get_cipher_cmdlistinfo(pce_dev, q_req);
if (cmdlistinfo == NULL) {
pr_err("Unsupported cipher algorithm %d, mode %d\n",
q_req->alg, q_req->mode);
return -EINVAL;
}
/* set up crypto device */
rc = _ce_setup_cipher(pce_dev, q_req, totallen_in,
areq->assoclen, cmdlistinfo);
} else {
/* set up crypto device */
rc = _ce_setup_cipher_direct(pce_dev, q_req, totallen_in,
areq->assoclen);
}
if (rc < 0)
goto bad;
/* setup for callback, and issue command to bam */
pce_dev->areq = q_req->areq;
pce_dev->qce_cb = q_req->qce_cb;
/* Register callback event for EOT (End of transfer) event. */
pce_dev->ce_sps.producer.event.callback = _aead_sps_producer_callback;
pce_dev->ce_sps.producer.event.options = SPS_O_DESC_DONE;
rc = sps_register_event(pce_dev->ce_sps.producer.pipe,
&pce_dev->ce_sps.producer.event);
if (rc) {
pr_err("Producer callback registration failed rc = %d\n", rc);
goto bad;
}
_qce_sps_iovec_count_init(pce_dev);
if (pce_dev->support_cmd_dscr)
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
&pce_dev->ce_sps.in_transfer);
if (pce_dev->ce_sps.minor_version == 0) {
if (_qce_sps_add_sg_data(pce_dev, areq->src, totallen_in,
&pce_dev->ce_sps.in_transfer))
goto bad;
_qce_set_flag(&pce_dev->ce_sps.in_transfer,
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
/*
* The destination data should be big enough to
* include CCM padding.
*/
if (_qce_sps_add_sg_data(pce_dev, areq->dst, out_len +
areq->assoclen + hw_pad_out,
&pce_dev->ce_sps.out_transfer))
goto bad;
if (totallen_in > SPS_MAX_PKT_SIZE) {
_qce_set_flag(&pce_dev->ce_sps.out_transfer,
SPS_IOVEC_FLAG_INT);
pce_dev->ce_sps.producer.event.options =
SPS_O_DESC_DONE;
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
} else {
if (_qce_sps_add_data(GET_PHYS_ADDR(
pce_dev->ce_sps.result_dump),
CRYPTO_RESULT_DUMP_SIZE,
&pce_dev->ce_sps.out_transfer))
goto bad;
_qce_set_flag(&pce_dev->ce_sps.out_transfer,
SPS_IOVEC_FLAG_INT);
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_COMP;
}
} else {
if (_qce_sps_add_sg_data(pce_dev, areq->assoc, areq->assoclen,
&pce_dev->ce_sps.in_transfer))
goto bad;
if (_qce_sps_add_sg_data(pce_dev, areq->src, areq->cryptlen,
&pce_dev->ce_sps.in_transfer))
goto bad;
_qce_set_flag(&pce_dev->ce_sps.in_transfer,
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
if (pce_dev->no_get_around)
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
&pce_dev->ce_sps.cmdlistptr.unlock_all_pipes,
&pce_dev->ce_sps.in_transfer);
/* Pass through to ignore associated data*/
if (_qce_sps_add_data(
GET_PHYS_ADDR(pce_dev->ce_sps.ignore_buffer),
areq->assoclen,
&pce_dev->ce_sps.out_transfer))
goto bad;
if (_qce_sps_add_sg_data(pce_dev, areq->dst, out_len,
&pce_dev->ce_sps.out_transfer))
goto bad;
/* Pass through to ignore hw_pad (padding of the MAC data) */
if (_qce_sps_add_data(
GET_PHYS_ADDR(pce_dev->ce_sps.ignore_buffer),
hw_pad_out, &pce_dev->ce_sps.out_transfer))
goto bad;
if (pce_dev->no_get_around ||
totallen_in <= SPS_MAX_PKT_SIZE) {
if (_qce_sps_add_data(
GET_PHYS_ADDR(pce_dev->ce_sps.result_dump),
CRYPTO_RESULT_DUMP_SIZE,
&pce_dev->ce_sps.out_transfer))
goto bad;
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_COMP;
} else {
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
}
_qce_set_flag(&pce_dev->ce_sps.out_transfer,
SPS_IOVEC_FLAG_INT);
}
rc = _qce_sps_transfer(pce_dev);
if (rc)
goto bad;
return 0;
bad:
if (pce_dev->assoc_nents) {
qce_dma_unmap_sg(pce_dev->pdev, areq->assoc,
pce_dev->assoc_nents, DMA_TO_DEVICE);
}
if (pce_dev->src_nents) {
qce_dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
DMA_TO_DEVICE);
}
if (areq->src != areq->dst) {
qce_dma_unmap_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents,
DMA_FROM_DEVICE);
}
return rc;
}
static int _qce_suspend(void *handle)
{
struct qce_device *pce_dev = (struct qce_device *)handle;
struct sps_pipe *sps_pipe_info;
if (handle == NULL)
return -ENODEV;
qce_enable_clk(pce_dev);
sps_pipe_info = pce_dev->ce_sps.consumer.pipe;
sps_disconnect(sps_pipe_info);
sps_pipe_info = pce_dev->ce_sps.producer.pipe;
sps_disconnect(sps_pipe_info);
qce_disable_clk(pce_dev);
return 0;
}
static int _qce_resume(void *handle)
{
struct qce_device *pce_dev = (struct qce_device *)handle;
struct sps_pipe *sps_pipe_info;
struct sps_connect *sps_connect_info;
int rc;
if (handle == NULL)
return -ENODEV;
qce_enable_clk(pce_dev);
sps_pipe_info = pce_dev->ce_sps.consumer.pipe;
sps_connect_info = &pce_dev->ce_sps.consumer.connect;
memset(sps_connect_info->desc.base, 0x00, sps_connect_info->desc.size);
rc = sps_connect(sps_pipe_info, sps_connect_info);
if (rc) {
pr_err("sps_connect() fail pipe_handle=0x%lx, rc = %d\n",
(uintptr_t)sps_pipe_info, rc);
return rc;
}
sps_pipe_info = pce_dev->ce_sps.producer.pipe;
sps_connect_info = &pce_dev->ce_sps.producer.connect;
memset(sps_connect_info->desc.base, 0x00, sps_connect_info->desc.size);
rc = sps_connect(sps_pipe_info, sps_connect_info);
if (rc)
pr_err("sps_connect() fail pipe_handle=0x%lx, rc = %d\n",
(uintptr_t)sps_pipe_info, rc);
pce_dev->ce_sps.out_transfer.user = pce_dev->ce_sps.producer.pipe;
pce_dev->ce_sps.in_transfer.user = pce_dev->ce_sps.consumer.pipe;
qce_disable_clk(pce_dev);
return rc;
}
struct qce_pm_table qce_pm_table = {_qce_suspend, _qce_resume};
EXPORT_SYMBOL(qce_pm_table);
int qce_aead_req(void *handle, struct qce_req *q_req)
{
struct qce_device *pce_dev;
struct aead_request *areq;
uint32_t authsize;
struct crypto_aead *aead;
uint32_t ivsize;
uint32_t totallen;
int rc;
struct qce_cmdlist_info *cmdlistinfo = NULL;
if (q_req->mode == QCE_MODE_CCM)
return _qce_aead_ccm_req(handle, q_req);
pce_dev = (struct qce_device *) handle;
areq = (struct aead_request *) q_req->areq;
aead = crypto_aead_reqtfm(areq);
ivsize = crypto_aead_ivsize(aead);
q_req->ivsize = ivsize;
authsize = q_req->authsize;
if (q_req->dir == QCE_ENCRYPT)
q_req->cryptlen = areq->cryptlen;
else
q_req->cryptlen = areq->cryptlen - authsize;
if ((q_req->cryptlen > UINT_MAX - areq->assoclen) ||
(q_req->cryptlen + areq->assoclen > UINT_MAX - ivsize)) {
pr_err("Integer overflow on total aead req length.\n");
return -EINVAL;
}
totallen = q_req->cryptlen + areq->assoclen + ivsize;
if (pce_dev->support_cmd_dscr) {
cmdlistinfo = _ce_get_aead_cmdlistinfo(pce_dev, q_req);
if (cmdlistinfo == NULL) {
pr_err("Unsupported aead ciphering algorithm %d, mode %d, ciphering key length %d, auth digest size %d\n",
q_req->alg, q_req->mode, q_req->encklen,
q_req->authsize);
return -EINVAL;
}
/* set up crypto device */
rc = _ce_setup_aead(pce_dev, q_req, totallen,
areq->assoclen + ivsize, cmdlistinfo);
if (rc < 0)
return -EINVAL;
};
pce_dev->assoc_nents = count_sg(areq->assoc, areq->assoclen);
if (pce_dev->ce_sps.minor_version == 0) {
/*
* For crypto 5.0 that has burst size alignment requirement
* for data descritpor,
* the agent above(qcrypto) prepares the src scatter list with
* memory starting with associated data, followed by
* iv, and data stream to be ciphered.
*/
pce_dev->src_nents = count_sg(areq->src, totallen);
} else {
pce_dev->src_nents = count_sg(areq->src, q_req->cryptlen);
};
pce_dev->ivsize = q_req->ivsize;
pce_dev->authsize = q_req->authsize;
pce_dev->phy_iv_in = 0;
/* associated data input */
qce_dma_map_sg(pce_dev->pdev, areq->assoc, pce_dev->assoc_nents,
DMA_TO_DEVICE);
/* cipher input */
qce_dma_map_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
DMA_TO_DEVICE);
/* cipher output for encryption */
if (areq->src != areq->dst) {
if (pce_dev->ce_sps.minor_version == 0)
/*
* The destination scatter list is pointing to the same
* data area as source.
*/
pce_dev->dst_nents = count_sg(areq->dst, totallen);
else
pce_dev->dst_nents = count_sg(areq->dst,
q_req->cryptlen);
qce_dma_map_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents,
DMA_FROM_DEVICE);
}
/* cipher iv for input */
if (pce_dev->ce_sps.minor_version != 0)
pce_dev->phy_iv_in = dma_map_single(pce_dev->pdev, q_req->iv,
ivsize, DMA_TO_DEVICE);
/* setup for callback, and issue command to bam */
pce_dev->areq = q_req->areq;
pce_dev->qce_cb = q_req->qce_cb;
/* Register callback event for EOT (End of transfer) event. */
pce_dev->ce_sps.producer.event.callback = _aead_sps_producer_callback;
pce_dev->ce_sps.producer.event.options = SPS_O_DESC_DONE;
rc = sps_register_event(pce_dev->ce_sps.producer.pipe,
&pce_dev->ce_sps.producer.event);
if (rc) {
pr_err("Producer callback registration failed rc = %d\n", rc);
goto bad;
}
_qce_sps_iovec_count_init(pce_dev);
if (pce_dev->support_cmd_dscr) {
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
&pce_dev->ce_sps.in_transfer);
} else {
rc = _ce_setup_aead_direct(pce_dev, q_req, totallen,
areq->assoclen + ivsize);
if (rc)
goto bad;
}
if (pce_dev->ce_sps.minor_version == 0) {
if (_qce_sps_add_sg_data(pce_dev, areq->src, totallen,
&pce_dev->ce_sps.in_transfer))
goto bad;
_qce_set_flag(&pce_dev->ce_sps.in_transfer,
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
if (_qce_sps_add_sg_data(pce_dev, areq->dst, totallen,
&pce_dev->ce_sps.out_transfer))
goto bad;
if (totallen > SPS_MAX_PKT_SIZE) {
_qce_set_flag(&pce_dev->ce_sps.out_transfer,
SPS_IOVEC_FLAG_INT);
pce_dev->ce_sps.producer.event.options =
SPS_O_DESC_DONE;
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
} else {
if (_qce_sps_add_data(GET_PHYS_ADDR(
pce_dev->ce_sps.result_dump),
CRYPTO_RESULT_DUMP_SIZE,
&pce_dev->ce_sps.out_transfer))
goto bad;
_qce_set_flag(&pce_dev->ce_sps.out_transfer,
SPS_IOVEC_FLAG_INT);
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_COMP;
}
} else {
if (_qce_sps_add_sg_data(pce_dev, areq->assoc, areq->assoclen,
&pce_dev->ce_sps.in_transfer))
goto bad;
if (_qce_sps_add_data((uint32_t)pce_dev->phy_iv_in, ivsize,
&pce_dev->ce_sps.in_transfer))
goto bad;
if (_qce_sps_add_sg_data(pce_dev, areq->src, q_req->cryptlen,
&pce_dev->ce_sps.in_transfer))
goto bad;
_qce_set_flag(&pce_dev->ce_sps.in_transfer,
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
if (pce_dev->no_get_around)
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
&pce_dev->ce_sps.cmdlistptr.unlock_all_pipes,
&pce_dev->ce_sps.in_transfer);
/* Pass through to ignore associated + iv data*/
if (_qce_sps_add_data(
GET_PHYS_ADDR(pce_dev->ce_sps.ignore_buffer),
(ivsize + areq->assoclen),
&pce_dev->ce_sps.out_transfer))
goto bad;
if (_qce_sps_add_sg_data(pce_dev, areq->dst, q_req->cryptlen,
&pce_dev->ce_sps.out_transfer))
goto bad;
if (pce_dev->no_get_around || totallen <= SPS_MAX_PKT_SIZE) {
if (_qce_sps_add_data(
GET_PHYS_ADDR(pce_dev->ce_sps.result_dump),
CRYPTO_RESULT_DUMP_SIZE,
&pce_dev->ce_sps.out_transfer))
goto bad;
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_COMP;
} else {
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
}
_qce_set_flag(&pce_dev->ce_sps.out_transfer,
SPS_IOVEC_FLAG_INT);
}
rc = _qce_sps_transfer(pce_dev);
if (rc)
goto bad;
return 0;
bad:
if (pce_dev->assoc_nents) {
qce_dma_unmap_sg(pce_dev->pdev, areq->assoc,
pce_dev->assoc_nents, DMA_TO_DEVICE);
}
if (pce_dev->src_nents) {
qce_dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
DMA_TO_DEVICE);
}
if (areq->src != areq->dst) {
qce_dma_unmap_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents,
DMA_FROM_DEVICE);
}
if (pce_dev->phy_iv_in) {
dma_unmap_single(pce_dev->pdev, pce_dev->phy_iv_in,
ivsize, DMA_TO_DEVICE);
}
return rc;
}
EXPORT_SYMBOL(qce_aead_req);
int qce_ablk_cipher_req(void *handle, struct qce_req *c_req)
{
int rc = 0;
struct qce_device *pce_dev = (struct qce_device *) handle;
struct ablkcipher_request *areq = (struct ablkcipher_request *)
c_req->areq;
struct qce_cmdlist_info *cmdlistinfo = NULL;
pce_dev->src_nents = 0;
pce_dev->dst_nents = 0;
/* cipher input */
pce_dev->src_nents = count_sg(areq->src, areq->nbytes);
qce_dma_map_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
DMA_TO_DEVICE);
/* cipher output */
if (areq->src != areq->dst) {
pce_dev->dst_nents = count_sg(areq->dst, areq->nbytes);
qce_dma_map_sg(pce_dev->pdev, areq->dst,
pce_dev->dst_nents, DMA_FROM_DEVICE);
} else {
pce_dev->dst_nents = pce_dev->src_nents;
}
pce_dev->dir = c_req->dir;
if ((pce_dev->ce_sps.minor_version == 0) && (c_req->dir == QCE_DECRYPT)
&& (c_req->mode == QCE_MODE_CBC)) {
memcpy(pce_dev->dec_iv, (unsigned char *)sg_virt(areq->src) +
areq->src->length - 16,
NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE);
}
/* set up crypto device */
if (pce_dev->support_cmd_dscr) {
cmdlistinfo = _ce_get_cipher_cmdlistinfo(pce_dev, c_req);
if (cmdlistinfo == NULL) {
pr_err("Unsupported cipher algorithm %d, mode %d\n",
c_req->alg, c_req->mode);
return -EINVAL;
}
rc = _ce_setup_cipher(pce_dev, c_req, areq->nbytes, 0,
cmdlistinfo);
} else {
rc = _ce_setup_cipher_direct(pce_dev, c_req, areq->nbytes, 0);
}
if (rc < 0)
goto bad;
/* setup for client callback, and issue command to BAM */
pce_dev->areq = areq;
pce_dev->qce_cb = c_req->qce_cb;
/* Register callback event for EOT (End of transfer) event. */
pce_dev->ce_sps.producer.event.callback =
_ablk_cipher_sps_producer_callback;
pce_dev->ce_sps.producer.event.options = SPS_O_DESC_DONE;
rc = sps_register_event(pce_dev->ce_sps.producer.pipe,
&pce_dev->ce_sps.producer.event);
if (rc) {
pr_err("Producer callback registration failed rc = %d\n", rc);
goto bad;
}
_qce_sps_iovec_count_init(pce_dev);
if (pce_dev->support_cmd_dscr)
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
&pce_dev->ce_sps.in_transfer);
if (_qce_sps_add_sg_data(pce_dev, areq->src, areq->nbytes,
&pce_dev->ce_sps.in_transfer))
goto bad;
_qce_set_flag(&pce_dev->ce_sps.in_transfer,
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
if (pce_dev->no_get_around)
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
&pce_dev->ce_sps.cmdlistptr.unlock_all_pipes,
&pce_dev->ce_sps.in_transfer);
if (_qce_sps_add_sg_data(pce_dev, areq->dst, areq->nbytes,
&pce_dev->ce_sps.out_transfer))
goto bad;
if (pce_dev->no_get_around || areq->nbytes <= SPS_MAX_PKT_SIZE) {
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_COMP;
if (_qce_sps_add_data(
GET_PHYS_ADDR(pce_dev->ce_sps.result_dump),
CRYPTO_RESULT_DUMP_SIZE,
&pce_dev->ce_sps.out_transfer))
goto bad;
} else {
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
}
_qce_set_flag(&pce_dev->ce_sps.out_transfer, SPS_IOVEC_FLAG_INT);
rc = _qce_sps_transfer(pce_dev);
if (rc)
goto bad;
return 0;
bad:
if (areq->src != areq->dst) {
if (pce_dev->dst_nents) {
qce_dma_unmap_sg(pce_dev->pdev, areq->dst,
pce_dev->dst_nents, DMA_FROM_DEVICE);
}
}
if (pce_dev->src_nents) {
qce_dma_unmap_sg(pce_dev->pdev, areq->src,
pce_dev->src_nents,
(areq->src == areq->dst) ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
}
return rc;
}
EXPORT_SYMBOL(qce_ablk_cipher_req);
int qce_process_sha_req(void *handle, struct qce_sha_req *sreq)
{
struct qce_device *pce_dev = (struct qce_device *) handle;
int rc;
struct ahash_request *areq = (struct ahash_request *)sreq->areq;
struct qce_cmdlist_info *cmdlistinfo = NULL;
pce_dev->src_nents = count_sg(sreq->src, sreq->size);
qce_dma_map_sg(pce_dev->pdev, sreq->src, pce_dev->src_nents,
DMA_TO_DEVICE);
if (pce_dev->support_cmd_dscr) {
cmdlistinfo = _ce_get_hash_cmdlistinfo(pce_dev, sreq);
if (cmdlistinfo == NULL) {
pr_err("Unsupported hash algorithm %d\n", sreq->alg);
return -EINVAL;
}
rc = _ce_setup_hash(pce_dev, sreq, cmdlistinfo);
} else {
rc = _ce_setup_hash_direct(pce_dev, sreq);
}
if (rc < 0)
goto bad;
pce_dev->areq = areq;
pce_dev->qce_cb = sreq->qce_cb;
/* Register callback event for EOT (End of transfer) event. */
pce_dev->ce_sps.producer.event.callback = _sha_sps_producer_callback;
pce_dev->ce_sps.producer.event.options = SPS_O_DESC_DONE;
rc = sps_register_event(pce_dev->ce_sps.producer.pipe,
&pce_dev->ce_sps.producer.event);
if (rc) {
pr_err("Producer callback registration failed rc = %d\n", rc);
goto bad;
}
_qce_sps_iovec_count_init(pce_dev);
if (pce_dev->support_cmd_dscr)
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
&pce_dev->ce_sps.in_transfer);
if (_qce_sps_add_sg_data(pce_dev, areq->src, areq->nbytes,
&pce_dev->ce_sps.in_transfer))
goto bad;
/* always ensure there is input data. ZLT does not work for bam-ndp */
if (!areq->nbytes)
_qce_sps_add_data(
GET_PHYS_ADDR(pce_dev->ce_sps.ignore_buffer),
pce_dev->ce_sps.ce_burst_size,
&pce_dev->ce_sps.in_transfer);
_qce_set_flag(&pce_dev->ce_sps.in_transfer,
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
if (pce_dev->no_get_around)
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
&pce_dev->ce_sps.cmdlistptr.unlock_all_pipes,
&pce_dev->ce_sps.in_transfer);
if (_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.result_dump),
CRYPTO_RESULT_DUMP_SIZE,
&pce_dev->ce_sps.out_transfer))
goto bad;
_qce_set_flag(&pce_dev->ce_sps.out_transfer, SPS_IOVEC_FLAG_INT);
rc = _qce_sps_transfer(pce_dev);
if (rc)
goto bad;
return 0;
bad:
if (pce_dev->src_nents) {
qce_dma_unmap_sg(pce_dev->pdev, sreq->src,
pce_dev->src_nents, DMA_TO_DEVICE);
}
return rc;
}
EXPORT_SYMBOL(qce_process_sha_req);
int qce_f8_req(void *handle, struct qce_f8_req *req,
void *cookie, qce_comp_func_ptr_t qce_cb)
{
struct qce_device *pce_dev = (struct qce_device *) handle;
bool key_stream_mode;
dma_addr_t dst;
int rc;
struct qce_cmdlist_info *cmdlistinfo;
switch (req->algorithm) {
case QCE_OTA_ALGO_KASUMI:
cmdlistinfo = &pce_dev->ce_sps.cmdlistptr.f8_kasumi;
break;
case QCE_OTA_ALGO_SNOW3G:
cmdlistinfo = &pce_dev->ce_sps.cmdlistptr.f8_snow3g;
break;
default:
return -EINVAL;
};
key_stream_mode = (req->data_in == NULL);
/* don't support key stream mode */
if (key_stream_mode || (req->bearer >= QCE_OTA_MAX_BEARER))
return -EINVAL;
/* F8 cipher input */
pce_dev->phy_ota_src = dma_map_single(pce_dev->pdev,
req->data_in, req->data_len,
(req->data_in == req->data_out) ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
/* F8 cipher output */
if (req->data_in != req->data_out) {
dst = dma_map_single(pce_dev->pdev, req->data_out,
req->data_len, DMA_FROM_DEVICE);
pce_dev->phy_ota_dst = dst;
} else {
/* in place ciphering */
dst = pce_dev->phy_ota_src;
pce_dev->phy_ota_dst = 0;
}
pce_dev->ota_size = req->data_len;
/* set up crypto device */
if (pce_dev->support_cmd_dscr)
rc = _ce_f8_setup(pce_dev, req, key_stream_mode, 1, 0,
req->data_len, cmdlistinfo);
else
rc = _ce_f8_setup_direct(pce_dev, req, key_stream_mode, 1, 0,
req->data_len);
if (rc < 0)
goto bad;
/* setup for callback, and issue command to sps */
pce_dev->areq = cookie;
pce_dev->qce_cb = qce_cb;
/* Register producer callback event for DESC_DONE event. */
pce_dev->ce_sps.producer.event.callback =
_f8_sps_producer_callback;
pce_dev->ce_sps.producer.event.options = SPS_O_DESC_DONE;
rc = sps_register_event(pce_dev->ce_sps.producer.pipe,
&pce_dev->ce_sps.producer.event);
if (rc) {
pr_err("Producer callback registration failed rc = %d\n", rc);
goto bad;
}
_qce_sps_iovec_count_init(pce_dev);
if (pce_dev->support_cmd_dscr)
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
&pce_dev->ce_sps.in_transfer);
_qce_sps_add_data((uint32_t)pce_dev->phy_ota_src, req->data_len,
&pce_dev->ce_sps.in_transfer);
_qce_set_flag(&pce_dev->ce_sps.in_transfer,
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
&pce_dev->ce_sps.cmdlistptr.unlock_all_pipes,
&pce_dev->ce_sps.in_transfer);
_qce_sps_add_data((uint32_t)dst, req->data_len,
&pce_dev->ce_sps.out_transfer);
_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.result_dump),
CRYPTO_RESULT_DUMP_SIZE,
&pce_dev->ce_sps.out_transfer);
_qce_set_flag(&pce_dev->ce_sps.out_transfer, SPS_IOVEC_FLAG_INT);
rc = _qce_sps_transfer(pce_dev);
if (rc)
goto bad;
return 0;
bad:
if (pce_dev->phy_ota_dst != 0)
dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_dst,
req->data_len, DMA_FROM_DEVICE);
if (pce_dev->phy_ota_src != 0)
dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_src,
req->data_len,
(req->data_in == req->data_out) ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
return rc;
}
EXPORT_SYMBOL(qce_f8_req);
int qce_f8_multi_pkt_req(void *handle, struct qce_f8_multi_pkt_req *mreq,
void *cookie, qce_comp_func_ptr_t qce_cb)
{
struct qce_device *pce_dev = (struct qce_device *) handle;
uint16_t num_pkt = mreq->num_pkt;
uint16_t cipher_start = mreq->cipher_start;
uint16_t cipher_size = mreq->cipher_size;
struct qce_f8_req *req = &mreq->qce_f8_req;
uint32_t total;
dma_addr_t dst = 0;
int rc = 0;
struct qce_cmdlist_info *cmdlistinfo;
switch (req->algorithm) {
case QCE_OTA_ALGO_KASUMI:
cmdlistinfo = &pce_dev->ce_sps.cmdlistptr.f8_kasumi;
break;
case QCE_OTA_ALGO_SNOW3G:
cmdlistinfo = &pce_dev->ce_sps.cmdlistptr.f8_snow3g;
break;
default:
return -EINVAL;
};
total = num_pkt * req->data_len;
/* F8 cipher input */
pce_dev->phy_ota_src = dma_map_single(pce_dev->pdev,
req->data_in, total,
(req->data_in == req->data_out) ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
/* F8 cipher output */
if (req->data_in != req->data_out) {
dst = dma_map_single(pce_dev->pdev, req->data_out, total,
DMA_FROM_DEVICE);
pce_dev->phy_ota_dst = dst;
} else {
/* in place ciphering */
dst = pce_dev->phy_ota_src;
pce_dev->phy_ota_dst = 0;
}
pce_dev->ota_size = total;
/* set up crypto device */
if (pce_dev->support_cmd_dscr)
rc = _ce_f8_setup(pce_dev, req, false, num_pkt, cipher_start,
cipher_size, cmdlistinfo);
else
rc = _ce_f8_setup_direct(pce_dev, req, false, num_pkt,
cipher_start, cipher_size);
if (rc)
goto bad;
/* setup for callback, and issue command to sps */
pce_dev->areq = cookie;
pce_dev->qce_cb = qce_cb;
/* Register producer callback event for DESC_DONE event. */
pce_dev->ce_sps.producer.event.callback =
_f8_sps_producer_callback;
pce_dev->ce_sps.producer.event.options = SPS_O_DESC_DONE;
rc = sps_register_event(pce_dev->ce_sps.producer.pipe,
&pce_dev->ce_sps.producer.event);
if (rc) {
pr_err("Producer callback registration failed rc = %d\n", rc);
goto bad;
}
_qce_sps_iovec_count_init(pce_dev);
if (pce_dev->support_cmd_dscr)
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
&pce_dev->ce_sps.in_transfer);
_qce_sps_add_data((uint32_t)pce_dev->phy_ota_src, total,
&pce_dev->ce_sps.in_transfer);
_qce_set_flag(&pce_dev->ce_sps.in_transfer,
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
&pce_dev->ce_sps.cmdlistptr.unlock_all_pipes,
&pce_dev->ce_sps.in_transfer);
_qce_sps_add_data((uint32_t)dst, total,
&pce_dev->ce_sps.out_transfer);
_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.result_dump),
CRYPTO_RESULT_DUMP_SIZE,
&pce_dev->ce_sps.out_transfer);
_qce_set_flag(&pce_dev->ce_sps.out_transfer, SPS_IOVEC_FLAG_INT);
rc = _qce_sps_transfer(pce_dev);
if (rc == 0)
return 0;
bad:
if (pce_dev->phy_ota_dst)
dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_dst, total,
DMA_FROM_DEVICE);
dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_src, total,
(req->data_in == req->data_out) ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
return rc;
}
EXPORT_SYMBOL(qce_f8_multi_pkt_req);
int qce_f9_req(void *handle, struct qce_f9_req *req, void *cookie,
qce_comp_func_ptr_t qce_cb)
{
struct qce_device *pce_dev = (struct qce_device *) handle;
int rc;
struct qce_cmdlist_info *cmdlistinfo;
switch (req->algorithm) {
case QCE_OTA_ALGO_KASUMI:
cmdlistinfo = &pce_dev->ce_sps.cmdlistptr.f9_kasumi;
break;
case QCE_OTA_ALGO_SNOW3G:
cmdlistinfo = &pce_dev->ce_sps.cmdlistptr.f9_snow3g;
break;
default:
return -EINVAL;
};
pce_dev->phy_ota_src = dma_map_single(pce_dev->pdev, req->message,
req->msize, DMA_TO_DEVICE);
pce_dev->ota_size = req->msize;
if (pce_dev->support_cmd_dscr)
rc = _ce_f9_setup(pce_dev, req, cmdlistinfo);
else
rc = _ce_f9_setup_direct(pce_dev, req);
if (rc < 0)
goto bad;
/* setup for callback, and issue command to sps */
pce_dev->areq = cookie;
pce_dev->qce_cb = qce_cb;
/* Register producer callback event for DESC_DONE event. */
pce_dev->ce_sps.producer.event.callback = _f9_sps_producer_callback;
pce_dev->ce_sps.producer.event.options = SPS_O_DESC_DONE;
rc = sps_register_event(pce_dev->ce_sps.producer.pipe,
&pce_dev->ce_sps.producer.event);
if (rc) {
pr_err("Producer callback registration failed rc = %d\n", rc);
goto bad;
}
_qce_sps_iovec_count_init(pce_dev);
if (pce_dev->support_cmd_dscr)
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
&pce_dev->ce_sps.in_transfer);
_qce_sps_add_data((uint32_t)pce_dev->phy_ota_src, req->msize,
&pce_dev->ce_sps.in_transfer);
_qce_set_flag(&pce_dev->ce_sps.in_transfer,
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
&pce_dev->ce_sps.cmdlistptr.unlock_all_pipes,
&pce_dev->ce_sps.in_transfer);
_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.result_dump),
CRYPTO_RESULT_DUMP_SIZE,
&pce_dev->ce_sps.out_transfer);
_qce_set_flag(&pce_dev->ce_sps.out_transfer, SPS_IOVEC_FLAG_INT);
rc = _qce_sps_transfer(pce_dev);
if (rc)
goto bad;
return 0;
bad:
dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_src,
req->msize, DMA_TO_DEVICE);
return rc;
}
EXPORT_SYMBOL(qce_f9_req);
static int __qce_get_device_tree_data(struct platform_device *pdev,
struct qce_device *pce_dev)
{
struct resource *resource;
int rc = 0;
pce_dev->is_shared = of_property_read_bool((&pdev->dev)->of_node,
"qcom,ce-hw-shared");
pce_dev->support_hw_key = of_property_read_bool((&pdev->dev)->of_node,
"qcom,ce-hw-key");
pce_dev->use_sw_aes_cbc_ecb_ctr_algo =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,use-sw-aes-cbc-ecb-ctr-algo");
pce_dev->use_sw_aead_algo =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,use-sw-aead-algo");
pce_dev->use_sw_aes_xts_algo =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,use-sw-aes-xts-algo");
pce_dev->use_sw_ahash_algo =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,use-sw-ahash-algo");
pce_dev->use_sw_hmac_algo =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,use-sw-hmac-algo");
pce_dev->use_sw_aes_ccm_algo =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,use-sw-aes-ccm-algo");
pce_dev->support_clk_mgmt_sus_res = of_property_read_bool(
(&pdev->dev)->of_node, "qcom,clk-mgmt-sus-res");
pce_dev->support_only_core_src_clk = of_property_read_bool(
(&pdev->dev)->of_node, "qcom,support-core-clk-only");
if (of_property_read_u32((&pdev->dev)->of_node,
"qcom,bam-pipe-pair",
&pce_dev->ce_sps.pipe_pair_index)) {
pr_err("Fail to get bam pipe pair information.\n");
return -EINVAL;
}
if (of_property_read_u32((&pdev->dev)->of_node,
"qcom,ce-device",
&pce_dev->ce_sps.ce_device)) {
pr_err("Fail to get CE device information.\n");
return -EINVAL;
}
if (of_property_read_u32((&pdev->dev)->of_node,
"qcom,ce-hw-instance",
&pce_dev->ce_sps.ce_hw_instance)) {
pr_err("Fail to get CE hw instance information.\n");
return -EINVAL;
}
if (of_property_read_u32((&pdev->dev)->of_node,
"qcom,bam-ee",
&pce_dev->ce_sps.bam_ee)) {
pr_info("BAM Apps EE is not defined, setting to default 1\n");
pce_dev->ce_sps.bam_ee = 1;
}
if (of_property_read_u32((&pdev->dev)->of_node,
"qcom,ce-opp-freq",
&pce_dev->ce_opp_freq_hz)) {
pr_info("CE operating frequency is not defined, setting to default 100MHZ\n");
pce_dev->ce_opp_freq_hz = CE_CLK_100MHZ;
}
pce_dev->ce_sps.dest_pipe_index = 2 * pce_dev->ce_sps.pipe_pair_index;
pce_dev->ce_sps.src_pipe_index = pce_dev->ce_sps.dest_pipe_index + 1;
resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"crypto-base");
if (resource) {
pce_dev->phy_iobase = resource->start;
pce_dev->iobase = ioremap_nocache(resource->start,
resource_size(resource));
if (!pce_dev->iobase) {
pr_err("Can not map CRYPTO io memory\n");
return -ENOMEM;
}
} else {
pr_err("CRYPTO HW mem unavailable.\n");
return -ENODEV;
}
resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"crypto-bam-base");
if (resource) {
pce_dev->bam_mem = resource->start;
pce_dev->bam_mem_size = resource_size(resource);
} else {
pr_err("CRYPTO BAM mem unavailable.\n");
rc = -ENODEV;
goto err_getting_bam_info;
}
resource = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (resource) {
pce_dev->ce_sps.bam_irq = resource->start;
} else {
pr_err("CRYPTO BAM IRQ unavailable.\n");
goto err_dev;
}
return rc;
err_dev:
if (pce_dev->ce_sps.bam_iobase)
iounmap(pce_dev->ce_sps.bam_iobase);
err_getting_bam_info:
if (pce_dev->iobase)
iounmap(pce_dev->iobase);
return rc;
}
static int __qce_init_clk(struct qce_device *pce_dev)
{
int rc = 0;
pce_dev->ce_core_src_clk = clk_get(pce_dev->pdev, "core_clk_src");
if (!IS_ERR(pce_dev->ce_core_src_clk)) {
rc = clk_set_rate(pce_dev->ce_core_src_clk,
pce_dev->ce_opp_freq_hz);
if (rc) {
pr_err("Unable to set the core src clk @%uMhz.\n",
pce_dev->ce_opp_freq_hz/CE_CLK_DIV);
goto exit_put_core_src_clk;
}
} else {
if (pce_dev->support_only_core_src_clk) {
rc = PTR_ERR(pce_dev->ce_core_src_clk);
pce_dev->ce_core_src_clk = NULL;
pr_err("Unable to get CE core src clk\n");
return rc;
} else {
pr_warn("Unable to get CE core src clk, set to NULL\n");
pce_dev->ce_core_src_clk = NULL;
}
}
if (pce_dev->support_only_core_src_clk) {
pce_dev->ce_core_clk = NULL;
pce_dev->ce_clk = NULL;
pce_dev->ce_bus_clk = NULL;
} else {
pce_dev->ce_core_clk = clk_get(pce_dev->pdev, "core_clk");
if (IS_ERR(pce_dev->ce_core_clk)) {
rc = PTR_ERR(pce_dev->ce_core_clk);
pr_err("Unable to get CE core clk\n");
goto exit_put_core_src_clk;
}
pce_dev->ce_clk = clk_get(pce_dev->pdev, "iface_clk");
if (IS_ERR(pce_dev->ce_clk)) {
rc = PTR_ERR(pce_dev->ce_clk);
pr_err("Unable to get CE interface clk\n");
goto exit_put_core_clk;
}
pce_dev->ce_bus_clk = clk_get(pce_dev->pdev, "bus_clk");
if (IS_ERR(pce_dev->ce_bus_clk)) {
rc = PTR_ERR(pce_dev->ce_bus_clk);
pr_err("Unable to get CE BUS interface clk\n");
goto exit_put_iface_clk;
}
}
return rc;
exit_put_iface_clk:
if (pce_dev->ce_clk)
clk_put(pce_dev->ce_clk);
exit_put_core_clk:
if (pce_dev->ce_core_clk)
clk_put(pce_dev->ce_core_clk);
exit_put_core_src_clk:
if (pce_dev->ce_core_src_clk)
clk_put(pce_dev->ce_core_src_clk);
pr_err("Unable to init CE clks, rc = %d\n", rc);
return rc;
}
static void __qce_deinit_clk(struct qce_device *pce_dev)
{
if (pce_dev->ce_bus_clk)
clk_put(pce_dev->ce_bus_clk);
if (pce_dev->ce_clk)
clk_put(pce_dev->ce_clk);
if (pce_dev->ce_core_clk)
clk_put(pce_dev->ce_core_clk);
if (pce_dev->ce_core_src_clk)
clk_put(pce_dev->ce_core_src_clk);
}
int qce_enable_clk(void *handle)
{
struct qce_device *pce_dev = (struct qce_device *)handle;
int rc = 0;
if (pce_dev->ce_core_src_clk) {
rc = clk_prepare_enable(pce_dev->ce_core_src_clk);
if (rc) {
pr_err("Unable to enable/prepare CE core src clk\n");
return rc;
}
}
if (pce_dev->support_only_core_src_clk)
return rc;
if (pce_dev->ce_core_clk) {
rc = clk_prepare_enable(pce_dev->ce_core_clk);
if (rc) {
pr_err("Unable to enable/prepare CE core clk\n");
goto exit_disable_core_src_clk;
}
}
if (pce_dev->ce_clk) {
rc = clk_prepare_enable(pce_dev->ce_clk);
if (rc) {
pr_err("Unable to enable/prepare CE iface clk\n");
goto exit_disable_core_clk;
}
}
if (pce_dev->ce_bus_clk) {
rc = clk_prepare_enable(pce_dev->ce_bus_clk);
if (rc) {
pr_err("Unable to enable/prepare CE BUS clk\n");
goto exit_disable_ce_clk;
}
}
return rc;
exit_disable_ce_clk:
if (pce_dev->ce_clk)
clk_disable_unprepare(pce_dev->ce_clk);
exit_disable_core_clk:
if (pce_dev->ce_core_clk)
clk_disable_unprepare(pce_dev->ce_core_clk);
exit_disable_core_src_clk:
if (pce_dev->ce_core_src_clk)
clk_disable_unprepare(pce_dev->ce_core_src_clk);
return rc;
}
EXPORT_SYMBOL(qce_enable_clk);
int qce_disable_clk(void *handle)
{
struct qce_device *pce_dev = (struct qce_device *) handle;
int rc = 0;
if (pce_dev->ce_bus_clk)
clk_disable_unprepare(pce_dev->ce_bus_clk);
if (pce_dev->ce_clk)
clk_disable_unprepare(pce_dev->ce_clk);
if (pce_dev->ce_core_clk)
clk_disable_unprepare(pce_dev->ce_core_clk);
if (pce_dev->ce_core_src_clk)
clk_disable_unprepare(pce_dev->ce_core_src_clk);
return rc;
}
EXPORT_SYMBOL(qce_disable_clk);
/* crypto engine open function. */
void *qce_open(struct platform_device *pdev, int *rc)
{
struct qce_device *pce_dev;
pce_dev = kzalloc(sizeof(struct qce_device), GFP_KERNEL);
if (!pce_dev) {
*rc = -ENOMEM;
pr_err("Can not allocate memory: %d\n", *rc);
return NULL;
}
pce_dev->pdev = &pdev->dev;
mutex_lock(&qce_iomap_mutex);
if (pdev->dev.of_node) {
*rc = __qce_get_device_tree_data(pdev, pce_dev);
if (*rc)
goto err_pce_dev;
} else {
*rc = -EINVAL;
pr_err("Device Node not found.\n");
goto err_pce_dev;
}
pce_dev->memsize = 10 * PAGE_SIZE;
pce_dev->coh_vmem = dma_alloc_coherent(pce_dev->pdev,
pce_dev->memsize, &pce_dev->coh_pmem, GFP_KERNEL);
if (pce_dev->coh_vmem == NULL) {
*rc = -ENOMEM;
pr_err("Can not allocate coherent memory for sps data\n");
goto err_iobase;
}
*rc = __qce_init_clk(pce_dev);
if (*rc)
goto err_mem;
*rc = qce_enable_clk(pce_dev);
if (*rc)
goto err_enable_clk;
if (_probe_ce_engine(pce_dev)) {
*rc = -ENXIO;
goto err;
}
*rc = 0;
qce_init_ce_cfg_val(pce_dev);
*rc = qce_sps_init(pce_dev);
if (*rc)
goto err;
qce_setup_ce_sps_data(pce_dev);
qce_disable_clk(pce_dev);
mutex_unlock(&qce_iomap_mutex);
return pce_dev;
err:
qce_disable_clk(pce_dev);
err_enable_clk:
__qce_deinit_clk(pce_dev);
err_mem:
if (pce_dev->coh_vmem)
dma_free_coherent(pce_dev->pdev, pce_dev->memsize,
pce_dev->coh_vmem, pce_dev->coh_pmem);
err_iobase:
if (pce_dev->iobase)
iounmap(pce_dev->iobase);
err_pce_dev:
mutex_unlock(&qce_iomap_mutex);
kfree(pce_dev);
return NULL;
}
EXPORT_SYMBOL(qce_open);
/* crypto engine close function. */
int qce_close(void *handle)
{
struct qce_device *pce_dev = (struct qce_device *) handle;
if (handle == NULL)
return -ENODEV;
mutex_lock(&qce_iomap_mutex);
qce_enable_clk(pce_dev);
qce_sps_exit(pce_dev);
if (pce_dev->iobase)
iounmap(pce_dev->iobase);
if (pce_dev->coh_vmem)
dma_free_coherent(pce_dev->pdev, pce_dev->memsize,
pce_dev->coh_vmem, pce_dev->coh_pmem);
qce_disable_clk(pce_dev);
__qce_deinit_clk(pce_dev);
mutex_unlock(&qce_iomap_mutex);
kfree(handle);
return 0;
}
EXPORT_SYMBOL(qce_close);
#define OTA_SUPPORT_MASK (1 << CRYPTO_ENCR_SNOW3G_SEL |\
1 << CRYPTO_ENCR_KASUMI_SEL |\
1 << CRYPTO_AUTH_SNOW3G_SEL |\
1 << CRYPTO_AUTH_KASUMI_SEL)
int qce_hw_support(void *handle, struct ce_hw_support *ce_support)
{
struct qce_device *pce_dev = (struct qce_device *)handle;
if (ce_support == NULL)
return -EINVAL;
ce_support->sha1_hmac_20 = false;
ce_support->sha1_hmac = false;
ce_support->sha256_hmac = false;
ce_support->sha_hmac = true;
ce_support->cmac = true;
ce_support->aes_key_192 = false;
ce_support->aes_xts = true;
if ((pce_dev->engines_avail & OTA_SUPPORT_MASK) == OTA_SUPPORT_MASK)
ce_support->ota = true;
else
ce_support->ota = false;
ce_support->bam = true;
ce_support->is_shared = (pce_dev->is_shared == 1) ? true : false;
ce_support->hw_key = pce_dev->support_hw_key;
ce_support->aes_ccm = true;
ce_support->clk_mgmt_sus_res = pce_dev->support_clk_mgmt_sus_res;
if (pce_dev->ce_sps.minor_version)
ce_support->aligned_only = false;
else
ce_support->aligned_only = true;
ce_support->use_sw_aes_cbc_ecb_ctr_algo =
pce_dev->use_sw_aes_cbc_ecb_ctr_algo;
ce_support->use_sw_aead_algo =
pce_dev->use_sw_aead_algo;
ce_support->use_sw_aes_xts_algo =
pce_dev->use_sw_aes_xts_algo;
ce_support->use_sw_ahash_algo =
pce_dev->use_sw_ahash_algo;
ce_support->use_sw_hmac_algo =
pce_dev->use_sw_hmac_algo;
ce_support->use_sw_aes_ccm_algo =
pce_dev->use_sw_aes_ccm_algo;
ce_support->ce_device = pce_dev->ce_sps.ce_device;
ce_support->ce_hw_instance = pce_dev->ce_sps.ce_hw_instance;
return 0;
}
EXPORT_SYMBOL(qce_hw_support);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Crypto Engine driver");